Spelling suggestions: "subject:"substances p""
71 |
Estudo de análogo da subtância P para desenvolvimento de radiofármaco com aplicação na terapia de tumores cerebrais / Study of analog of substance P for development of radiopharmaceutical with application in therapy of cerebral tumors.Guilherme Luiz de Castro Carvalho 02 July 2015 (has links)
Atualmente os gliomas representam cerca de 81% dos tumores cerebrais malignos, com aumento na incidência tanto em crianças, como em adultos acima dos 45 anos. Um número elevado de receptores neuroquinina tipo 1 (NK-1) estão expressos em células de glioma, estando a ligação da Substância P (SP) a esses receptores, envolvida no desenvolvimento e progressão desse tipo de tumor. A SP quelada ao DOTA (SP-DOTA), radiomarcada, vem sendo testada para utilização na terapia de gliomas, sendo o lutécio-177 (177Lu), devido a seu menor alcance tecidual, o radioisótopo mais indicado para tumores localizados em áreas críticas do cérebro. No entanto, estudos indicam a necessidade da adição de um excesso de metionina para prevenção da oxidação peptídica da SP-DOTA-177Lu, visando aumentar a estabilidade e a capacidade de ligação às células tumorais. Para superar esse desafio, surge a perspectiva da utilização de um novo análogo da SP, com estrutura modificada, para prevenir a oxidação peptídica. Neste contexto, o objetivo desse trabalho foi estudar a marcação de um novo análogo da SP com 177Lu e caracterizar suas propriedades in vitro e in vivo, visando a obtenção de um radiofármaco inédito e com potencial aplicação na terapia de tumores cerebrais e realizar estudos preliminares de marcação deste novo análogo com Ítrio-90 (90Y). O novo análogo foi obtido pela troca do aminoácido metionina (Met) pelo aminoácido norleucina (Nle) na posição 11 da cadeia peptídica da SP, sendo esses peptídeos denominados respectivamente SP(Met11)-DOTA e SP(Nle11)-DOTA. Após análise da oxidação peptídica dos dois peptídeos, os parâmetros da radiomarcação da SP(Nle11)-DOTA, com 177LuCl3, foram estudados para determinar a melhor condição de marcação. As estabilidades in vitro da SP(Nle11)-DOTA-177Lu sob refrigeração (2-8°C), no freezer (-20°C) e em soro humano (37°C) foram determinadas após radiomarcação com alta atividade, quanto ao uso de agentes estabilizantes e após diluição. A SP(Nle11)-DOTA também foi radiomarcada com 90Y, utilizando-se a condição padrão determinada, sendo a estabilidade in vitro da SP(Nle11)-DOTA-90Y sob refrigeração (2-8°C) e em freezer (-20°C), avaliada após radiomarcação com alta atividade e quanto a utilização de agente estabilizante. A capacidade de ligação in vitro às células tumorais (U-87 MG e M059J) e a biodistribuição in vivo em camundongos BALB/c sadios foram determinadas para a SP(Nle11)-DOTA-177Lu e comparadas à SP(Met11)-DOTA-177Lu. A ligação às proteínas plasmáticas e a biodistribuição em camundongos Nude com modelo tumoral também foram avaliadas. Os resultados obtidos na análise da oxidação peptídica comprovaram a importância da adição de excesso de metionina para prevenção da oxidação peptídica e indicaram uma alta estabilidade da SP(Nle11)-DOTA, durante e após o processo de radiomarcação. A adição de 148 MBq (4 mCi) da solução de 177LuCl3 em HCl 0,05N à 10 μg de SP(Nle11)-DOTA diluída em tampão acetato de sódio 0,4 M pH 4,5 seguida pela incubação a uma temperatura de 90ºC por 30 minutos, sob agitação de 350 rpm foi definida com condição padrão de marcação. O congelamento (-20°C), o uso de agentes estabilizantes e a diluição apresentaram-se como métodos efetivos para garantir uma alta estabilidade in vitro da SP(Nle11)-DOTA-177Lu, após a marcação com alta atividade. Bons resultados também foram observados para a marcação da SP(Nle11)-DOTA com 90YCl3 e para a estabilidade in vitro da SP(Nle11)-DOTA-90Y, após congelamento (-20°C) e quando utilizado ácido gentísico como estabilizante. A SP(Nle11)-DOTA-177Lu apresentou uma boa especificidade pelas células tumorais, principalmente pelas células de glioma humano M059J, sugerindo que a substituição do aminoácido metionina por norleucina na posição 11 não compromete a capacidade de ligação da SP(Nle11) às células tumorais. Uma baixa porcentagem de ligação às proteínas plasmáticas e um rápido clareamento sanguíneo foram observados para a SP(Nle11)-DOTA-177Lu, sendo esse radiofármaco eliminado preferencialmente por via renal. A SP(Nle11)-DOTA-177Lu apresentou uma boa estabilidade in vivo e se mostrou incapaz de atravessar a barreira hematoencefálica, sendo seu uso indicado por injeção intratumoral ou intracavitária. O estudo de biodistribuição em animais com modelo tumoral, mostrou que esse radiofármaco se liga às células tumorais por ligações receptor específicas. Com base nesse dados conclui-se que a SP(Nle11)-DOTA-177Lu, apresenta-se como um radiofármaco inédito que devido às suas propriedades in vitro e in vivo favoráveis, apresenta potencial aplicação na terapia de tumores cerebrais, representando uma nova possibilidade dentro do limitado arsenal terapêutico para esse tipo de tumor. / Currently gliomas represent about 81% of malignant brain tumors with increased incidence in children and in adults over 45 years. A large number of type 1 neurokinin receptor (NK-1) are expressed in glioma cells, being the binding of substance P (SP) to these receptors, involved in the development and progression of this tumor type. The SP conjugated at DOTA chelator (SP-DOTA), radiolabeled, have been tested for use in the treatment of gliomas, and the lutetium-177 (177 Lu), due to its lower tissue range, has been the most suitable radioisotope for tumors located in critical areas brain. However, studies indicate the necessity of adding an excess of methionine to prevent the peptide SP-DOTA-177Lu oxidation in order to increase the stability and capacity to bind to tumor cells. To overcome this challenge, there is the prospect of using a new analog of SP with a modified structure, to prevent peptide oxidation. In this context, the aim of this work was study the labeling of a new analog of SP with 177Lu and characterize their properties in vitro and in vivo, in order to obtain a novel radiopharmaceutical with potential application in brain tumor therapy, and perform preliminary studies labeling of this new analog with yttrium-90 (90Y). The new analog was obtained by replacement of the amino acid methionine (Met) by the amino acid norleucine (Nle) at position 11 of the peptide chain of SP, and these peptides were called SP(Met11)-DOTA and SP(Nle11)-DOTA respectively. After analysis of the oxidation for the two peptides, the radiolabeling parameters of the SP(Nle11)-DOTA with 177LuCl3 were studied to determine the best labeling condition. The SP(Nle11)-DOTA was also radiolabeled with 90Y, using standard condition, and the stability in vitro of the SP(Nle11)-DOTA-90Y assessed under refrigeration (2-8 °C) and under freezing (-20° C), after radiolabeling with high activity and use of stabilizing agent. The stabilities in vitro of the SP (Nle11)-DOTA-177Lu under refrigeration (2-8 °C), under freezing (-20 °C) and in human serum (37 °C) were determined after radiolabeling with high activity, with use of stabilizing agents and after dilution. The ability of in vitro binding to tumor cells (U-87 MG and M059J) and the biodistribution in vivo in healthy BALB/c mice were determined for the 177Lu-DOTA-SP(Nle11) and compared to 177Lu-DOTA-SP(Met11). The plasma protein binding and biodistribution in Nude mice with tumor model were also evaluated. The results obtained from analysis of oxidation for the two peptides confirmed the importance of adding excess methionine to prevent peptide oxidation and indicated a high stability of the DOTA- SP(Nle11), during and after the radiolabeling process. The addition of 148 MBq (4 mCi) of 177LuCl3 solution in 0.05N HCl at 10 μg DOTA-SP(Nle11) diluted in 0.4 M sodium acetate buffer pH 4.5 followed by incubation at a temperature of 90 °C for 30 minutes under constant agitation to 350 rpm was defined as standard labeling condition. The freezing (-20 °C), the use of stabilizing agents and the dilution were presented as effective methods to ensure high stability in vitro 177Lu-DOTA-SP(Nle11), after labeling with high activity. Good results were also observed for labeling DOTA-SP(Nle11) with 90YCl3 and for stability in vitro of the 90Y-DOTA-SP(Nle11) after freezing (-20 °C) and when gentisic acid was used as a stabilizer. The 177Lu-DOTA-SP(Nle11) showed good specificity to tumor cells, particularly human glioma cells (M059J), suggesting that substitution of the amino acid norleucine for methionine at position 11 does not compromise the capacity of SP(Nle11) binding to tumor cells. A low percentage of plasma protein binding and rapid blood clearance were observed for the 177Lu-DOTA-SP(Nle11), being this radiopharmaceutical preferably eliminated by the kidney. The 177Lu-DOTA-SP(Nle11) showed good stability in vivo and inability to cross the blood brain barrier, being its use indicated through intratumoral or intracavitary injection. The biodistribution studies in animals with tumor model showed that the radiopharmaceutical binds to the tumor cells by specific receptor binding. Based on this data was concluded that the 177Lu-DOTA-SP(Nle11), can be presented as a novel radiopharmaceutical that due to its favorable properties in vitro and in vivo, presents a potential application in the therapy of brain tumors, representing a new possibility within the limited therapeutic options for this type of tumor.
|
72 |
Distribution of Substance P Binding Sites in Guinea-Pig Heart and Pharmacological Effects of Substance PHoover, Donald B., Hancock, John C. 01 September 1988 (has links)
The localization of substance P (SP) binding sites in guinea-pig heart was studied by in vitro autoradiography, and pharmacological effects of SP were examined with isolated heart preparations. Specific binding of [125I]SP was found in association with cardiac parasympathetic ganglia and some coronary arteries. No specific SP binding sites were associated with coronary veins, atria, ventricles, ascending aorta or pulmonary trunk. Local bolus injections of SP (2.5 and 25 nmol) caused a bradycardia which, in some preparations, was followed by a slight tachycardia. SP produced a prominent coronary vasodilator effect after basal perfusion pressure had been elevated by 1 μM vasopressin. The vasodilator response was probably mediated by the SP binding sites associated with the coronary arteries. Bradycardia might be elicited by binding of SP to the receptors present in the parasympathetic ganglia and subsequent release of acetylcholine. It is suggested that these effects of SP on the isolated heart could be of physiological significance.
|
73 |
Innervation of Guinea Pig Heart by Neurons Sensitive to CapsaicinHougland, Margaret W., Durkee, Kristine H., Hougland, Arthur E. 01 January 1986 (has links)
To determine the origin of non-vagal afferent fibers innervating the heart of guinea pigs, capsaicin was injected into the ventricular myocardium to induce depletion of substance P (SP). The lower cervical, upper thoracic and lumbar spinal ganglia, as well as the left atrium and base of ventricles, were assayed for SP depletion by using the enzyme-linked immunosorbent assay (ELISA) and immunohistochemical procedures. Capsaicin affected spinal ganglia from the 3 regions differently. The substance P level in lumbar spinal ganglia remained fairly constant, while the level of SP from cervical and thoracic regions declined significantly. At the maximal depletion dosage (173 μg of capsaicin/kg), SP concentration decreased 72.3% in cervical spinal ganglia, 45.5% in thoracic ganglia and 56.1% in the atrium. The lack of SP depletion in lumbar ganglia indicates that capsaicin acted locally on cardiac afferents rather than systemically. Data from this study suggest that capsaicin-sensitive neurons of the heart have cell bodies in the lower cervical spinal ganglia as well as in the upper thoracic spinal ganglia.
|
74 |
Substance P Evokes Bradycardia by Stimulation of Postganglionic Cholinergic NeuronsTompkins, John D., Hoover, Donald B., Hancock, John C. 01 June 1999 (has links)
Substance P (SP) evokes bradycardia that is mediated by cholinergic neurons in experiments with isolated guinea pig hearts. This project investigates the negative chronotropic action of SP in vivo. Guinea pigs were anesthetized with urethane, vagotomized and artificially respired. Using this model, IV injection of SP (32 nmol/kg/50 μl saline) caused a brief decrease in heart rate (-30 ± 3 beats/min from a baseline of 256 ± 4 beats/min, n = 27) and a long-lasting decrease in blood pressure (-28 ± 2 mmHg from baseline of 51 ± 5 mmHg, n = 27). The negative chronotropic response to SP was attenuated by muscarinic receptor blockade with atropine (-29 ± 9 beats/min before vs -8 ± 2 beats/min after treatment, P = 0.0204, n = 5) and augmented by inhibition of cholinesterases with physostigmine (-23 ± 6 beats/min before versus -74 ± 20 beats/min after treatment, P = 0.0250, n = 5). Ganglion blockade with chlorisondamine did not diminish the negative chronotropic response to SP. In another series of experiments, animals were anesthetized with sodium pentobarbital or urethane and studied with or without vagotomy. Neither anesthetic nor vagotomy had a significant effect on the negative chronotropic response to SP (F3,24 = 1.97, P = 0.2198). Comparison of responses to 640 nmol/kg nitroprusside and 32 nmol/kg SP demonstrated that the bradycardic effect of SP occurs independent of vasodilation. These results suggest that SP can evoke bradycardia in vivo through stimulation of postganglionic cholinergic neurons. Copyright (C) 1999 Elsevier Science Inc.
|
75 |
Pressor and Tachycardic Responses to Intravenous Substance P in Anesthetized RatsHancock, John C., Lindsay, Gregory W. 01 January 1995 (has links)
Intravenous injection of 3-33 nmol/kg of substance P (SP) caused pressor and tachycardic responses in anesthetized rats. The responses were not blocked by a ganglion nicotinic receptor antagonist or by pithing. Pretreatment with reserpine blocked both responses. β-Adrenoceptor blockade attenuated only the tachycardic response, and α-adrenoceptor blockade attenuated only the pressor response. These findings indicated that the effects of SP to increase blood pressure and heart rate are due to sympathetic ganglion stimulation. Studies with adrenalectomized rats showed that stimulation of the adrenals by SP contributes to both responses but makes a greater contribution to the tachycardic response. These observations raise the possibility that the tachykinin innervation of sympathetic ganglia and the adrenal medulla may be involved in the local regulation of blood pressure and heart rate.
|
76 |
Direct Injection of Substance P-antisense Oligonucleotide Into the Feline NTS Modifies the Cardiovascular Responses to Ergoreceptor but Not Baroreceptor Afferent InputWilliams, Carole A., Ecay, Tom, Reifsteck, Angela, Fry, Bonnie, Ricketts, Brian 14 February 2003 (has links)
Substance P (SP) is released from the feline nucleus tractus solitarius (NTS) in response to activation of skeletal muscle afferent input. However, there are differing results about SP release from the rostral NTS in response to baroreceptor afferent input. An anti-sense oligonucleotide to feline SP (SP-asODN) was injected directly into the rostral NTS of chloralose-anesthetized cats to determine whether blood pressure or heart rate responses to ergoreceptor activation (muscle contraction) or baroreceptor unloading (carotid artery occlusion) were sensitive to SP knockdown. Control injections included either buffer alone or a scrambled-sequenced oligonucleotide (SP-sODN). Both muscle contractions and carotid occlusions were performed 3, 6 and 12 h after the completion of the oligonucleotide injections. The cardiovascular responses to contractions were significantly attenuated 3 and 6 h after SP-asODN, but not by the injection of the SP-sODN. The cardiovascular responses to contractions returned to control levels 12 h post anti-sense injection. No detectable release of SP (using antibody-coated microprobes) was measured 3 and 6 h after SP-asODN injections and the expression of SP-immunoreactivity (SP-IR) in the NTS was significantly attenuated, as determined by immunohistochemistry procedures. In contrast, neither the injection of SP-asODN nor the s-ODN attenuated the cardiovascular responses to carotid occlusions, or altered the pattern of release of SP from the brainstem. Injection of the SP-sODN did not affect the expression of SP-IR. These results suggest that the SP involved with mediating the peripheral somatomotor signal input to the rostral NTS comes from SP-containing neurons within the NTS. Our results also suggest that SP in the rostral NTS does not play a direct role in mediating the cardiovascular responses to unloading the carotid baroreceptors. We suggest that the SP released during isometric contractions excites an inhibitory pathway modulating baroreceptor input, thus contributing to the increase in mean blood pressure.
|
77 |
Enhanced Ganglionic Responses to Substance P in Spontaneously Hypertensive RatsHancock, John C., Lindsay, Gregory W. 01 January 2000 (has links)
Intravenous injection of substance P (SP) increases blood pressure in normotensive rats by stimulating sympathetic ganglia. This study compared the effects of SP to increase renal nerve firing and blood pressure in normotensive and hypertensive rats treated with chlorisondamine. The increase in renal nerve firing was greatest in spontaneously hypertensive rats (SHR), intermediate in Wistar rats, and least in Wistar-Kyoto (WKY) rats. Blood pressure was increased more in SHR than in Wistar rats. Blood pressure was not increased in WKY rats. Responses to the ganglionic stimulant 1, 1-dimethyl-4-phenylpiperazinium were the same in the three strains. These results suggest that there is a selective increase in the action of SP on sympathetic ganglia of SHR and that ganglion responsiveness to SP is correlated with its effect on blood pressure.
|
78 |
Substance P Release in Response to Cardiac Ischemia From Rat Thoracic Spinal Dorsal Horn Is Mediated by TRPV1Steagall, R. J., Sipe, A. L., Williams, C. A., Joyner, W. L., Singh, K. 12 July 2012 (has links)
Spinal cord stimulation (SCS) inhibits substance P (SP) release and decreases the expression of the transient receptor potential vanilloid 1 (TRPV1) in the spinal cord at thoracic 4 (T4) during cardiac ischemia in rat models (. Ding et al., 2007). We hypothesized that activation of TRPV1 in the T4 spinal cord segment by intermittent occlusion of the left anterior descending coronary artery (CoAO) mediates spinal cord SP release. Experiments were conducted in urethane-anesthetized Sprague-Dawley male rats using SP antibody-coated microprobes to measure SP release at the central terminal endings of cardiac ischemic-sensitive afferent neurons (CISAN) in the spinal T4 dorsal horns. Vehicle, capsaicin (CAP; TRPV1 agonist) and capsazepine (CZP; TRPV1 antagonist) were injected into the left T4 prior to stimulation of CISAN by intermittent CoAO (with or without upper cervical SCS). CAP induced endogenous SP release from laminae I and II in the T4 spinal cord above baseline. Conversely, CZP injections significantly inhibited SP release from laminae I-VII in the T4 spinal cord segment below baseline. CZP also attenuated CoAO-induced SP release, while T4 injections of CZP with SCS completely restored SP release to basal levels during CoAO activation. CAP increased the number of c-Fos (a marker for CISAN activation) positive T4 dorsal horn neurons compared to sham-operated animals, while CZP (alone or during CoAO and SCS. +. CoAO) significantly reduced the number of c-Fos positive neurons. These results suggest that spinal release of the putative nociceptive transmitter SP occurs, at least in part, via a TRPV1 mechanism.
|
79 |
Capsaicin-Evoked Bradycardia in Anesthetized Guinea Pigs Is Mediated by Endogenous TachykininsHancock, John, Hoover, Donald B. 10 April 2008 (has links)
The present study was done to characterize the effects of endogenous tachykinins on heart rate in urethane-anesthetized guinea pigs. Intravenous injection of capsaicin (32 nmol/kg) was used to evoke release of tachykinins and calcitonin gene-related peptide (CGRP) from cardiac sensory nerve fibers. Such injections caused a brief decrease in heart rate (- 37 ± 7 beats/min, n = 6) that was followed by a more prolonged increase (+ 44 ± 10 beats/min). Blood pressure was lowered by - 11 ± 2 mmHg. Bilateral vagotomy did not affect the chronotropic or depressor responses to capsaicin, but atropine (1 μmol/kg) nearly abolished the bradycardic response (- 8 ± 3 beats/min, n = 7). Combined blockade of NK2 and NK3 receptors, with SR48968 and SR14801 respectively, also caused a significant reduction of capsaicin-evoked bradycardia (- 14 ± 3 beats/min, n = 4) but did not affect bradycardia evoked by vagal nerve stimulation. Blockade of CGRP receptors eliminated capsaicin-evoked tachycardia and prolonged the capsaicin-evoked bradycardia. These findings suggest that capsaicin-evoked bradycardia in the anesthetized guinea pig is mediated by tachykinins that stimulate cardiac cholinergic neurons. This effect appears to be truncated by the positive chronotropic action of CGRP that is also released from cardiac afferents by capsaicin.
|
80 |
Distinct Regional Distributions of nk1 and nk3 Neurokinin Receptor Immunoreactivity in Rat Brainstem Gustatory CentersHarrison, Theresa A., Hoover, Donald B., King, Michael S. 01 March 2004 (has links)
Tachykinins and their receptors are present in gustatory centers, but little is known about tachykinin function in gustation. In this study, immunohistochemical localization of substance P and two centrally prevalent neurokinin receptors, NK1 and NK3, was carried out in the rostral nucleus of the solitary tract and the caudal parabrachial nucleus to evaluate regional receptor/ligand correspondences. All three proteins showed regional variations in labeling density that correlated with distinct sites in gustatory centers. In the rostral nucleus of the solitary tract, the relative densities of substance P and NK1 receptors varied in parallel across subnuclei, with both being moderate to dense in the dorsocentral, chemoresponsive zone. NK3 receptors had a distinct distribution in the caudal half of this zone, suggesting a unique role in processing taste input from the posterior tongue. In the caudal parabrachial nucleus, substance P and NK1 receptor immunoreactivities were dense in the pontine taste area, while NK3 receptor labeling was sparse. The external medial subnucleus had substantial NK3 receptor and substance P labeling, but little NK1 receptor immunoreactivity. These findings suggest that distinct tachykinin ligand/neurokinin receptor combinations may be important in local processing of information within brainstem gustatory centers.
|
Page generated in 0.053 seconds