• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 5
  • 4
  • 2
  • 2
  • Tagged with
  • 71
  • 71
  • 22
  • 18
  • 15
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

PROFILING THE INTRINSIC SEQUENCE SPECIFICITY OF PROTEIN TYROSINE PHOSPHATASES

Selner, Nicholas January 2013 (has links)
No description available.
32

Substrátová specificita epifytických společenstev rozsivek (Bacillariophyceae) a krásivek (Desmidiales) / Substrate specifity of epiphytic communities of diatoms (Bacillariophyceae) and desmids (Desmidiales)

Mutinová, Petra January 2015 (has links)
Substrate specificity of epiphytic communities of diatoms (Bacillariophyceae) and desmids (Desmidiales) Bc. Petra Mutinová Master's thesis, Prague, 2015 Abstract It has been always assumed, and frequently reported, that host plants, as biologically active substrates, should have a direct influence on associated epiphyton. However, some studies favoured the neutral substrate hypothesis. Thus the relationship between host plant and epiphytic community remained unresolved. This Master's thesis focused on the basal question that numerous previous studies overlooked. Is there any significant influence of host plant on freshwater algal epiphyton in comparison to the influence of other factors, e.g. site and environmental conditions? In addition, substrate specificity of individual algal taxa was investigated. The research concerned several types of natural plant substrates at several water bodies in the Czech Republic, which provided a more accurate and general insight in the ecology of microphytobenthos. The results have demonstrated that site was the main factor affecting epiphytic community structure, followed by mild, but still noticeable, effect of environmental conditions (pH and conductivity). In contrary, host plant had almost no influence and very few algal species were found to be host specific....
33

Sekretované proteasy motolice jaterní a jejich interakce s endogenním inhibitorem / Secreted proteases of the liver fluke and their interaction with endogenous inhibitor

Buša, Michal January 2013 (has links)
The liver fluke, Fasciola hepatica, is one of the most important parasites of livestock, and it also infects humans. The proteolytic system of trematodes is critical for their interaction with the host and is a potential target for the development of novel vaccines. This work is focused on proteases secreted by F. hepatica adults and on FheCy2, a new protease inhibitor from the cystatin family. The proteolytic activity of the secreted proteases was analyzed using: (a) chromogenic protein substrates and fluorogenic peptide substrates, (b) selective protease inhibitors, and (c) a fluorescent activity-based probe for visualization of proteases. The results showed that the secreted proteases are cysteine proteases of papain family belonging to cathepsins L and B. These proteases were effectivelly inhibited by FheCy2 as demonstrated by enzymological analysis. It can be assumed that FheCy2 participates in the physiological regulation of endogenous proteases secreted by F. hepatica adults, which makes it attractive candidate protein for vaccination studies. Key words: Fasciola hepatica, cathepsins, proteolytic activity, substrate specificity, protease inhibitors (In Czech)
34

Mutational Analysis of Substrate Specificity in a Citrus Paradisi Flavonol 3- O-Glucosyltransferase

Devaiah, Shivakumar P., Tolliver, Benjamin M., Zhang, Cheng, Owens, Daniel K., McIntosh, Cecilia A. 01 January 2018 (has links)
Citrus paradisi 3-O-glucosyltransferase (Cp3GT, Genbank Protein ID: ACS15351) and Citrus sinensis 3-O-glucosyltransferase (Cs3GT, Genbank Protein ID: AAS00612.2) share 95% amino acid sequence identity. Cp3GT was previously established as a flavonol-specific 3-O-glucosyltransferase by direct enzymatic analysis. Cs3GT is annotated as a flavonoid-3-O-glucosyltransferase and predicted to use anthocyanidins as substrates based on gene expression analysis correlated with the accumulation of anthocyanins in C. sinensis cv. Tarocco, a blood orange variety. Mutant enzymes in which amino acids found in Cs3GT were substituted for position equivalent residues in Cp3GT were generated, heterologously expressed in yeast, and characterized for substrate specificity. Structure–function relationships were investigated for wild type and mutant glucosyltransferases by homology modelling using a crystallized Vitis viniferaanthocyanidin/flavonol 3-O-GT (PDB: 2C9Z) as template and subsequent substrate docking. All enzymes showed similar patterns for optimal temperature, pH, and UDP/metal ion inhibition with differences observed in kinetic parameters. Although changes in the activity of the mutant proteins as compared to wild type were observed, cyanidin was never efficiently accepted as a substrate.
35

Structure, Function and Evolutionary Studies of Fasciola Cathepsin L-like Proteases

Norbury, Luke James, s9806495@student.rmit.edu.au January 2008 (has links)
Fasciola cause considerable monetary loss in the agriculture industry, while parasitism of humans is an emerging disease. Fasciola cathepsin L-like proteases are believed to aid parasite invasion and survival through a range of functions including feeding, immune evasion and modulation, tissue migration, egg production and excystment. As such these proteases are considered good targets for chemotherapies and vaccine development. Fasciola cathepsins are evolutionarily divided into clades that reflect function and life stage of expression. Analysis of F. gigantica genomic DNA and mRNA identified novel cathepsin L-like sequences which are incorporated into a phylogenetic analysis of the complete Fasciola cathepsin L-like protease family. Analysis of mRNA transcripts isolated in this study also points to trans-splicing occurring amongst cathepsin transcripts, the first time this has been identified in Fasciola species. S2 subsite specificity is important in determining substrate interactions with cathepsin L-like proteases. Previous work has shown that amino acid substitutions at this site can dramatically influence substrate specificity. A number of substitutions, specifically those that have been observed, or predicted to occur during the evolution of Fasciola cathepsins L-like proteases, were introduced into the S2 subsite of FhCatL5 at aa69 to determine their influence. The introduction of L69C and L69S substitutions resulted in low overall activity indicating their expression provides no functional advantage, thus explaining the absence of such variants amongst fluke. The L69F variant showed an increase in the ability to cleave substrates with P2 proline, indicating F69 variants expressed by fluke are also likely to have this ability, similar to that shown with L69Y and FhCatL2. The introduction of a L69W substitution leads to increased cleavage of substrates with P2 proline, along with a decrease in cleavage of substrates with P2 phenylalanine. FgCatL1G transcripts were isolated from F. gigantica metacercariae. This contrasts with FhCatL5 and FhCatL2 which have been isolated in adult F. hepatica. These cathepsins differ at aa69, possessing tryptophan, leucine and tyrosine respectively. The processing and substrate specificities of each recombinant enzyme was analysed and compared. While FhCatL5 and FhCatL2 process in vitro in a manner similar to that reported for FhCatL1, FgCatL1G requires different processing conditions, including neutral pH. Combined with FgCatL1G possessing increased stability at acidic pH, this reflects the different environment into which FgCatL1G is expressed by immature compared to the adult flukes. The substrate specificity of FgCatL1G also differed from previously reported cathepsins, with a preference for P2 proline and low activity against substrates with P2 phenylalanine. This is the first time recombinant expression and purification of a cathepsin L-like protease specific to the immature life stages of Fasciola has been undertaken and had enzyme specificity analysed. This work has expanded knowledge of the repertoire of cathepsin proteases expressed at various life-stages of the liver fluke. Vaccination and/or drug inhibition studies may in the future be targeted towards cathepsins that are expressed in either the adult or immature stage, or perhaps both in a multi-targeted approach. The knowledge gained in this study may allow such targets to be chosen.
36

Tunnels and Grooves : Structure-Function Studies in Two Disparate Enzymes

Ericsson, Daniel January 2009 (has links)
This thesis describes structural and binding studies in enzymes from two different  organisms: ribonucleotide reductase from Mycobacterium tuberculosis (RNR) and lipase A from Candida antarctica (CalA). RNR is viable as a target for new drugs against the causative agent of tuberculosis. The biologically active form of RNR is a heterotetramer with an α2β2 substructure. Here we show that an N-acetylated heptapeptide based on the C-terminal sequence of the smaller RNR subunit can disrupt the formation of the holoenzyme sufficiently to inhibit its function. An N-terminal truncation, an alanine scan and a novel statistical molecular design approach based on the heptapeptide Ac-Glu-Asp-Asp-Asp-Trp-Asp-Phe-OH were applied. A full-length acetylated heptapeptide was necessary for inhibition, and Trp5 and Phe7 were also essential. Exchanging the acetyl for the N-terminal Fmoc protective-group increased the binding potency ten-fold. Based on this, several truncated and N-protected peptides were evaluated in a competitive fluorescence polarization assay. The single-amino acid Fmoc-Trp inhibits the RNR holoenzyme formation with a dissociation constant of 12µM, making it an attractive candidate for further development of non-peptidic inhibitors Lipases are enzymes with major biotechnological applications. We report the x-ray structure of CalA, the first member of a novel family of lipases. The fold includes a well-defined lid as well as a classical α/β hydrolase domain. The structure is that of the closed/inactive state of the enzyme, but loop movements near Phe431 will provide virtually unlimited access to solvent for the alcohol moiety of an ester substrate. The structure thus provides a basis for understanding the enzyme's preference for acyl moieties with long, straight tails, and for its highly promiscuous acceptance of widely different alcohol and amine moieties. An unconventional oxyanion hole is observed in the present structure, although the situation may change during interfacial activation.
37

Exploiting enzyme promiscuity for rational design

Branneby, Cecilia January 2005 (has links)
Enzymes are today well recognized in various industrial applications, being an important component in detergents, and catalysts in the production of agrochemicals, foods, pharmaceuticals, and fine chemicals. Their large use is mainly due to their high selectivity and environmental advantage, compared to traditional catalysts. Tools and techniques in molecular biology offer the possibility to screen the natural sources and engineer new enzyme activities which further increases their usefulness as catalysts, in a broader area. Although enzymes show high substrate and reaction selectivity many enzymes are today known to catalyze other reactions than their natural ones. This is called enzyme promiscuity. It has been suggested that enzyme promiscuity is Nature’s way to create diversity. Small changes in the protein sequence can give the enzyme new reaction specificity. In this thesis I will present how rational design, based on molecular modeling, can be used to explore enzyme promiscuity and to change the enzyme reaction specificity. The first part of this work describes how Candida antarctica lipase B (CALB), by a single point mutation, was mutated to give increased activity for aldol additions, Michael additions and epoxidations. The activities of these reactions were predicted by quantum chemical calculations, which suggested that a single-point mutant of CALB would catalyze these reactions. Hence, the active site of CALB, which consists of a catalytic triad (Ser, His, Asp) and an oxyanion hole, was targeted by site-directed mutagenesis and the nucleophilic serine was mutated for either glycine or alanine. Enzymes were expressed in Pichia pastoris and analyzed for activity of the different reactions. In the case of the aldol additions the best mutant showed a four-fold initial rate over the wild type enzyme, for hexanal. Also Michael additions and epoxidations were successfully catalyzed by this mutant. In the last part of this thesis, rational design of alanine racemase from Geobacillus stearothermophilus was performed in order to alter the enzyme specificity. Active protein was expressed in Escherichia coli and analyzed. The explored reaction was the conversion of alanine to pyruvate and 2-butanone to 2-butylamine. One of the mutants showed increased activity for transamination, compared to the wild type. / QC 20100929
38

Characterization of CYP2C9 residues important for conferring substrate specificity and inter-individual variability in drug metabolism /

Dickmann, Leslie J. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 99-107).
39

Meticulous control of the T3SS of Yersinia is essential for full virulence / Minutiös kontroll av Yersinias T3SS är essentiellt för fullständig virulens

Björnfot, Ann-Catrin January 2011 (has links)
The type III secretion system (T3SS) of pathogenic Yersinia pseudotuberculosis is involved in virulence. The syringe-like secretion system spans both bacterial membranes and is responsible for the ability of Yersinia to transfer toxic proteins (Yop proteins) into the eukaryotic target cell. The T3SS is believed to have evolved from the flagellum and regulation of the T3SS is a complex event that involves a series of regulatory proteins, whereby two are YscP and YscU. In a regulatory model, called the substrate specificity switch, both proteins act together to ensure proper T3SS structure and function by regulating a stop in YscF needle protein export with a shift to Yop effector secretion. YscU undergoes autoproteolysis at a conserved motif consisting of amino acids Asparagine-Proline-Threonine-Histidine (NPTH). Processing generates a C-terminal 10 kDa peptide, YscUCC. Processing is crucial for proper T3SS regulation and function both in vitro and in vivo. Full-length YscU does not support Yop secretion and after cleavage, YscUCC remains attached to the rest of YscU and acts as a negative block on T3S. Relief of this negative block is suggested to occur through displacement of YscUCC from the rest of YscU. Thorough control of many different cellular processes is brought by the heat shock proteins (HSPs) DnaK and DnaJ. Due to their multiple regulatory functions, mutations in the hsp-genes lead to pleiotropic effects. DnaK and DnaJ are essential for proper flagellum driven motion of bacteria, but more so; they ensure proper Yersinia T3SS function in vivo. Furthermore, DnaJ interacts with YscU and may be directly involved in T3SS regulation. Virulence of Yersinia is regulated on many levels. A previously identified virulence associated protein, VagH, is now characterized as an S-adenosyl-methionine dependent methyltransferase. The targets of the methylation activity of VagH are release factors 1 and 2 (RF1 and RF2), that are important for translation termination. The enzymatic activity of VagH is important for Yop secretion and a vagH mutant up-regulates a T3SS negative regulatory protein, YopD. Furthermore, a vagH mutant is avirulent in a mouse infection model, but is not affected in macrophage intracellular survival. The importance of VagH in vivo makes it a possible target for novel antimicrobial therapy.
40

Investigating the Mechanisms and Specificities of BphI-BphJ, an Aldolase-Dehydrogenase Complex From Burkholderia xenovorans LB400

Baker, Perrin 11 May 2012 (has links)
Microbial degradation of aromatic hydrocarbons is imperative for maintaining the global carbon cycle and removing potentially toxic aromatic xenobiotics. This thesis focuses on the characterization of a pyruvate-specific class II aldolase (BphI) and acetaldehyde dehydrogenase (BphJ), the final two enzymes of the bph meta-cleavage pathway in Burkholderia xenovorans LB400. This pathway is responsible for the degradation of the industrial pollutant polychlorinated biphenyls (PCB) and therefore mechanistic characterization of these enzymes can be applied to improve pollutant degradation. BphI catalyzes the aldol cleavage of 4-hydroxy-2-oxoacids to pyruvate and an aldehyde while BphJ transforms aldehydes to acyl-CoA, using NAD+ and CoASH as cofactors. Size-exclusion chromatography was used to determine that the oligomeric unit of the BphI-BphJ complex is a heterotetramer. The aldolase BphI was shown to exhibit a compulsory order mechanism and utilize 4-hydroxy-2-oxoacids with an S configuration at C4. The generation of BphI active site variants allowed for the proposal of a catalytic mechanism and a greater understanding as to how stereospecificity occurs. Using steady-state kinetic assays, Arg-16 was demonstrated to be essential for catalysis. Molecular modeling of the substrate and pH dependency (wild-type pKa of ~7, lost in H20A and H20S variants) were used to identify His-20 as the catalytic base. Tyr-290 was originally proposed to be the catalytic acid. However, this was refuted as a Tyr-290 (Y290F) variant did not affect the catalytic efficiency of the enzyme. Instead, the variant was observed to exhibit a loss of stereochemical control. From the crystal structure of an orthologous aldolase-dehydrogenase complex, solvent isotope effect studies, and a proton inventory, a water molecule was implicated as the catalytic acid. Based on their position within the crystal structure, Leu-87 and Leu-89 were implicated in substrate specificity. Replacement of Leu-89 with alanine effectively increased the length of the active site, allowing for the accommodation of longer aldehyde substrates. In contrast, Leu-87 was responsible for hydrophobic stabilization of the C4-methyl of the substrate. Double variants L87N;Y290F and L87W;Y290F were constructed to enable the binding of 4(R)-hydroxy-2-oxoacids. Polarimetric analysis confirmed that the double variants were able to synthesize 4-hydroxy-2-oxoacids of up to 8 carbons in lengths, which were of the opposite stereoisomer to those produced by the wild-type enzyme. Cys-131 was identified as the catalytic thiol that forms an acyl-enzyme intermediate in the dehydrogenase, BphJ. This enzyme was shown to exhibit similar specificity constants for acetaldehyde and propionaldehyde and utilize aliphatic aldehydes from two to five carbons in length as substrates. The enzyme was able to use either NAD+ or NADP+ as the cofactor. Finally, we demonstrated that aldehydes produced in the aldolase reaction are not released into the bulk solvent but are channeled directly to the dehydrogenase, providing the first biochemical determination of substrate channeling in any aldolase-dehydrogenase complex. / Chapter 3 - Reprinted (adapted) with permission from Baker, P., Carere, J., and Seah, S. Y. (2011) Probing the Molecular Basis of Substrate Specificity, Stereospecificity, and Catalysis in the Class II Pyruvate Aldolase, BphI, Biochemistry 50: 3559-3569. Copyright (2011) American Chemical Society. Chapter 4 - Reprinted (adapted) with permission from Baker, P., and Seah, S. Y. (2012) Rational design of stereoselectivity in the class II pyruvate aldolase BphI, J Am Chem Soc 134: 507-513. Copyright (2012) American Chemical Society. Chapter 6 - Reprinted (adapted) with permission from Baker, P., Hillis, C., Carere, J., and Seah, S. Y. (2012) Protein-protein interactions and substrate channeling in orthologous and chimeric aldolase-dehydrogenase complexes, Biochemistry 51: 1942-1952. Copyright (2012) American Chemical Society. / National Science and Engineering Research Council of Canada (NSERC), Ontario Graduate Scholarship in Science and Technology

Page generated in 0.0728 seconds