• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 43
  • 15
  • 6
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 232
  • 39
  • 35
  • 31
  • 31
  • 31
  • 30
  • 29
  • 25
  • 24
  • 24
  • 23
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Transcription Level Determination Of Candidate Genes Upon Infections Of Powdery Mildew On Barley

Atici, Elif 01 February 2012 (has links) (PDF)
Immune systems are fundamentally based on the differentiation of self and non-self. Unlike mammals, plants have an innate immune system responding to the pathogen only at the site of attack. One of these pathogens is Blumeria graminis f. sp. hordei which is an obligate biotrophic pathogen causing powdery mildew disease and resulting in up to 30% yield loss for both cultivated and wild barley. In this study, Pallas-01 (P-01) and Pallas-03 (P-03) barley lines were inoculated with powdery mildew race Bgh103 (64/01) resulting incompatible and compatible interactions, respectively. 6, 12, 24, 48 and 72 hour-post-inoculation (hpi) samples were used in order to define the differential gene expression of NAD malic enzyme, chloroplast lipocalin, phosphoglyceromutase (PGM), Mg chelatase and 26S protease regulatory subunit 6B homolog. In the proteomics study previously conducted in the laboratory, except for the NAD-dependent malic enzyme, the other four proteins were shown to be involved in the incompatible interaction of P-01 and Bgh103 at protein level, whereas NAD-dependent malic enzyme was changing in the compatible interaction. The expression level for both proteomics and transcriptomics were assumed to be similar. However, the level of transcript would not always reflect its protein level or correlate with the level of proteins, due to complex cellular regulation processes. Post-transcriptional modifications such as synthesis, processing, degradation and post-translational modifications are changing the level of proteins expressed, thus a parallel correlation between the protein and mRNA levels can be lost. Other possible reasons for this variation can be changes in mRNA and protein stability, efficiency of translation and protein&rsquo / s turnover rate. The transcription level changes of the genes investigated in this study are found to be differentially expressed, supporting the proteomics data indicating that these genes are possibly involved in resistance. For further investigations, genetic tools such as gene silencing with RNAi and knockout experiments are required in order to elucidate the mechanism of these candidate genes in the plant-pathogen interaction.
162

The effect of the AML1-ETO translocation on cell cycle tumor suppressor gene function

Ko, Rose Marie. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed Feb. 18, 2009). Includes bibliographical references.
163

Mechanism of inteferon-beta-mediated inhibition of IL-8 gene expression

Laver, Travis. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed June 6, 2008). Includes bibliographical references.
164

Regulation of expression and function of neurokine receptors /

Port, Martha D. January 2008 (has links)
Thesis (Ph. D.)--University of Washington, 2008. / Vita. Includes bibliographical references (leaves 86-111).
165

Oxidative stress-stimulated vascular calcification

Byon, Chang Hyun. January 2009 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed on July 12, 2010). Includes bibliographical references.
166

Rôle du canal sodique NaV1.5 et de la sous-unité auxiliaire β4 dans l’invasivité des cellules cancéreuses mammaires in vitro et in vivo / Role of voltage-gated sodium channel NaV1.5 and β4 auxiliary subunit in the in vitro and in vivo breast cancer cells invasiveness

Driffort, Virginie 24 November 2014 (has links)
L’expression anormale du canal sodique Nav1.5 dans le cancer du sein est corrélée au développement métastatique et à une mortalité augmentée. Le canal Nav1.5 est localisé dans les invadopodes des cellules cancéreuses mammaires humaines MDA-MB-231 et augmente leur activité protéolytique par une modulation allostérique de l’échangeur NHE-1 et l’activation de protéases acides. In vivo, dans un modèle de xénogreffe sur souris NMRI nude, l’expression de Nav1.5 potentialise la colonisation des poumons par les cellules cancéreuses mammaires humaines. Cette colonisation métastatique est inhibée par un traitement à la ranolazine, un inhibiteur pharmacologique des canaux Nav1.5. La sous-unité β4, auxiliaire des canaux Nav, voit son expression diminuer au cours de la progression cancéreuse, ce qui est associé in vitro à une augmentation de l’invasivité cellulaire. Cette augmentation d’invasivité semble indépendante du canal Nav1.5 et pourrait être associée à une transition des cellules vers un phénotype amiboïde. En conclusion, l’expression de Nav1.5 et la perte d’expression de β4 semblent jouer des rôles complémentaires dans l’invasivité des cellules cancéreuses. / The abnormal expression of sodium channel Nav1.5 in breast cancer is correlated with metastatic development and an increased mortality. The Nav1.5 channel is located in invadopodia in human breast cancer cells MDA-MB-231, where it increases proteolytic activity by allosteric modulation of exchanger NHE-1 and activation of acidic proteases. In vivo, in a xenograft model in nude NMRI mice, the expression of Nav1.5 potentiates lung colonization by human breast cancer cells. Metastatic colonization is inhibited by treatment with ranolazine, a pharmacological inhibitor of Nav1.5. The β4 subunit, an auxiliary subunit of Nav channels, is expressed at low levels or lost when tumors are more aggressive, and its suppression in vitro increases celI invasiveness. This increase seems to be independent of Nav1.5 and could be associated with the transition of cells to an amoeboid phenotype. In conclusion, Nav1.5 expression and the loss of β4 expression seem to play complementary roles in the invasiveness of cancer cells.
167

Mechanisms Contributing to Transcriptional Regulation and Chromatin Remodeling of the Bone Specific Osteocalcin Gene

Gutierrez Gallegos, Soraya Elisa 20 November 2002 (has links)
Activation of tissue-specific genes is a tightly controlled process that normally involves the combined action of several transcription factors and transcriptional co-regulators. The bone-specific osteoca1cin gene (OC) has been used as a prototype to study both tissue-specific and hormonal responsiveness. In this study we have examined the role of Runx2, VDR and C/EBP factors in the regulation of OC gene transcription. Contributions of the Runx and VDRE motifs to OC promoter activity were addressed by introducing point mutations within the context of the rat (-1.1 kb) osteocalcin promoter fused to a CAT-reporter gene. The functional significance of these mutations was assayed following transient transfection and after genomic integration in ROS 17/2.8 osteoblastic cell lines. Furthermore, we tested the effect of these mutations on the chromatin organization of the OC promoter. Our data show that all three Runx sites are required for maximal activation of the OC promoter and that the distal sites contribute significantly to the basal activity. Strikingly, mutation of the three Runx sites abrogates responsiveness of the OC promoter to vitamin D; this loss is also observed when only the Runx sites flanking the VDRE are mutated. Chromatin changes that result in the appearance of DNase I hypersensitive sites during activation of the OC gene are well documented. Mutation of the three Runx sites results in altered chromatin structure as reflected by absence of DNase I hypersensitive sites at the vitamin D response element and over the proximal, tissue-specific basal promoter. These data are consistent with the critical role of Runx2 in osteoblast maturation and bone development. Mutation of the VDRE resulted in a complete loss of vitamin D responsiveness; however, this mutant promoter exhibited increased basal activity. The two DNase I hypersensitive sites characteristic of the transcriptionally active OC gene in osteoblastics cells were not altered upon mutation of the VDRE element, although restriction enzyme accessibility in the proximal promoter region was decreased. We also found an increased level of histone H3 acetylation at the VDRE mutant promoter in comparison to the endogenous gene. Thus binding of VDR to OC promoter is required to achieve a normal transcriptional regulation and chromatin structure of the OC gene. Although Runx2 is considered a master gene for bone development and osteoblast differentiation, it is noteworthy that osteoblast-specific transcription of the rat OC promoter occurs even in the absence of Runx sites. Therefore, other transcription factor(s) should be able to drive OC expression. We characterized a C/EBP enhancer element in the proximal promoter of the rat osteoca1cin gene that resides in close proximity to a Runx element, essential for tissue-specific activation. We find that C/EBPβ or δ and Runx2 factors interact together in a synergistic manner to enhance OC transcription in cell culture systems. Mutational analysis demonstrated that this synergism is mediated through the C/EBP responsive element in the OC promoter and requires a direct interaction between Runx2 and C/EBPβ or δ. Taken together, our findings strongly support a mechanism in which combinatorial interaction of Runx2, VDR, C/EBPβ or δ and probably other transcription factors are needed for regulating OC expression. In this process Runx factors not only act as simple transcriptional trans activators but also by facilitating modifications in promoter architecture and maintaining an active conformation of the target gene promoter.
168

Regulation of Cell Growth and Differentiation within the Context of Nuclear Architecture by the Runx2 Transcription Factor: a Dissertation

Young, Daniel W 20 September 2005 (has links)
The Runx family of transcription factors performs an essential role in animal development by controlling gene expression programs that mediate cell proliferation, growth and differentiation. The work described in this thesis is concerned with understanding mechanisms by which Runx proteins support this program of gene expression within the architectural context of the mammalian cell nucleus. Multiple aspects of nuclear architecture are influenced by Runx2 proteins including sequence-specific DNA binding at gene regulatory regions, organization of promoter chromatin structure, and higher-order compartmentalization of proteins in nuclear foci. This work provides evidence for several functional activities of Runx2 in relation to architectural parameters of gene. expression for the control of cell growth and differentiation. First, the coordination of SWI/SNF mediated chromatin alterations by Runx2 proteins is found to be a critical component of osteoblast differentiation for skeletal development. Several chromatin modifying enzymes and signaling factors interact with the developmentally essential Runx2 C-terminus. A patent-pending microscopic image analysis strategy invented as part of this thesis work - called intranuclear informatics - has contributed to defining the C-terminal portion of Runx2 as a molecular determinant for the nuclear organization of Runx2 foci and directly links Runx2 function with its organization in the nucleus. Intranuclear informatics also led to the discovery that nuclear organization of Runx2 foci is equivalently restored in progeny cells following mitotic division - a natural perturbation in nuclear structure and function. Additional microscopic studies revealed the sequential and selective reorganization of transcriptional regulators and RNA processing factors during progression of cell division to render progeny cells equivalently competent to support Runx2 mediated gene expression. Molecular studies provide evidence that the Runx proteins have an active role in retaining phenotype by interacting with target gene promoters through sequence-specific DNA binding during cell division to support lineage-specific control of transcriptional programs in progeny cells. Immunolocalization of Runx2 foci on mitotic chromosome spreads revealed several large foci with pairwise symmetry on sister chromatids; these foci co-localize with the RNA polymerase I transcription factor, Upstream Binding Factor (UBFl) at nucleolar organizing regions. A series of experiments were carried out to reveal that Runx2 interacts directly with ribosomal DNA loci in a cell cycle dependent manner; that Runx2 is localized to UBF foci within nucleoli during interphase; that Runx2 attenuates rRNA synthesis; and that this repression of ribosomal gene expression by Runx2 is associated with cell growth inhibition and induction of osteoblast-specific gene expression. This thesis has identified multiple novel mechanisms by which Runx2 proteins function within the hierarchy of nuclear architecture to control cell proliferation, growth and differentiation.
169

Interdoménové a intradoménové interakce u motorové podjednotky EcoR124I: Výpočetní studie

SINHA, Dhiraj January 2016 (has links)
EcoR124I is a Type I restrictionmodification (RM) enzyme and as such forms multifunctional pentameric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on the motor subunit HsdR. When non-methylated invading DNA is recognized by the complex, two HsdR endonuclease/motor subunits start to translocate dsDNA without strand separation activity up to thousands base pairs towards the stationary enzyme while consuming ~1 molecule of ATP per base pair advanced. Whenever translocation is stalled the HsdR subunits cleave the dsDNA nonspecifically far from recognition site. The X-ray crystal structure of HsdR of EcoR124I bound to ATP gave a first insight of structural/functional correlation in the HsdR subunit. The four domains within the subunit were found to be in a square planer arrangement. Computational modeling including molecular dynamics in combination with crystallography, point mutations, in vivo and in vitro assays reveals how interactions between these four domains contribute to ATP-dependent DNA translocation, DNA cleavage or inter-domain communication between the translocase and endonuclease activities.
170

"Hipogonadismo hipogonadotrófico: diagnóstico pré-puberal e papel das isoformas e variantes gênicas do hormônio luteinizante no fenótipo da doença" / Hypogonadotropic hypogonadism : pre-pubertal diagnosis and the role of the isoforms and allelic variants of the luteinizing hormone in the disease phenotype

Karina Berger 09 June 2006 (has links)
A resposta do LH e do FSH ao estímulo com GnRH, realizado em estádio pré-puberal em pacientes com hipopituitarismo acompanhados até a idade puberal, são úteis para predizer o diagnóstico da deficiência de gonadotrofinas, principalmente nas meninas. O estudo da região codificadora do gene LH em pacientes com hipogonadismo hipogonadotrófico e concentrações normais de LH revelou 5 variantes alélicas. A freqüência das variantes alélicas Arg8 e Thr15 foi similar entre hipogonádicos e adultos normais e a sua presença não interferiu nas concentrações séricas do LH. O estudo das isoformas do LH mostrou um predomínio das isoformas ácidas do LH em hipogonádicos e indivíduos normais, não permitindo atribuir à sua presença a baixa atividade biológica do LH imunorreativo encontrado em 13% dos hipogonádicos / LH and FSH responses to GnRH stimulation carried out in the pre-pubertal stage in patients with hypopituitarism followed until the pubertal stage are useful tools for predicting the gonadotropin deficiency diagnosis, especially in girls. The study of the codifying region of the LH gene in patients with hypogonadotropic hypogonadism and normal LH levels disclosed 5 allelic variants. The frequencies of the allelic variants Arg8 and Thr15 were similar between hypogonadic and normal adults, and their presence did not alter serum LH levels. The study of LH isoforms showed a predominance of acid LH isoforms in hypogonadic and normal subjects, which does not allow us to ascribe to their presence the low biological activity of the immunoreactive LH, found in 13% of the hypogonadic individuals

Page generated in 0.0479 seconds