• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Einfluss posttranslationaler Modifikationen auf die Funktion des Prototyp Foamy Virus Hüllproteins

Lüftenegger, Daniel 11 April 2008 (has links) (PDF)
Die Familie der Retrovirinae wird in zwei Unterfamilien untergliedert, die Orthoretrovirinae und die Spumaretrovirinae. Foamyviren stellen aufgrund einiger besonderer Eigenschaften die einzigen Vertreter dieser Unterfamilie, die sie als Bindeglied zwischen den Retroviren und den Hepadnaviren erscheinen lassen. So erfolgt beispielsweise die reverse Transkription des viralen Genoms nicht erst nach Eintritt in die Zielzelle, sondern, anders als bei Orthoretroviren, bereits in der Produzentenzelle noch während oder kurz nach der Morphogenese. Diese Eigenschaft teilen Foamyviren mit den Hepadnaviren ebenso wie die obligate Koexpression der Kapsidproteine mit den viralen Hüllproteinen für die Freisetzung von Viruspartikeln. Im Gegensatz zu Orthoretroviren sind Foamyviren folglich nicht in der Lage virusähnliche Partikel (VLP) zu sekretieren und die spezifische Funktion des PFV Env Proteins kann nicht durch heterologe Hüllproteine übernommen werden. Die Synthese des PFV Env Vorläuferproteins erfolgt am rER, wobei es eine Typ III Membrantopologie erhält, mit sowohl dem N- als auch dem C-Terminus im Zytoplasma. Während des Transports des Proteins zum Ort der Partikelknospung, wird es posttranslational im Golgi-Apparat, oder dem trans-Golgi Netzwerk, durch Furin oder eine Furin-ähnliche Protease in drei partikelassoziierte Untereinheiten prozessiert. Eine Partikelassoziation retroviraler Signalpeptide ist bislang nur für Foamyviren nachgewiesen worden, genauso wie eine essentielle Rolle dieses Proteins bei der Interaktion zwischen dem
2

Development of novel vaccines for the concurrent immunisation against multiple dengue virus serotypes

Liew, Steven Christopher January 2006 (has links)
A major obstacle to the development of dengue virus (DENV) vaccines has been the need to immunise concurrently against each of the four DENV serotypes in order to avoid sensitising recipients to developing severe DENV infections. A problem already encountered with live attenuated tetravalent DENV vaccines has been the difficulty in eliciting adequate immune responses against all four DENV serotypes in human hosts. This could have been due to variations in the antigenicity and/or the replication rates of the four DENV serotypes. Non-replicating DNA vaccines avoid the issue of different replication rates. Currently, only DENV-1 and DENV-2 DNA vaccines have been evaluated. In this study, a number of DNA vaccines for each of the four DENV serotypes were developed and their immunogenicity was evaluated in outbred mice. These vaccines included DNA vaccines encoding the DENV prM-E protein genes derived from the four DENV serotypes (pVAX-DEN1, -DEN2, -DEN3 and -DEN4), and DNA vaccines encoding DENV prM and hybrid-E protein genes derived from multiple DENV serotypes. The hybrid-E protein genes were constructed by substituting either domains I and II, domain III, and/or the stem-anchor region from the E protein of one DENV serotype with the corresponding region from another DENV serotype. A number of superior DNA vaccines against each of the four DENV serotypes were identified based on their ability to elicit high titres (≥40, FFURNT50) of neutralising antibodies against the corresponding DENV in mice. The superior DNA vaccines against DENV-1 were pVAX-DEN1, pVAX-C2M2E211, pVAX-C2M2E122 and pVAX-C2M1E122. The superior DNA vaccine against DENV-2 was pVAX-C2M1E122 and the superior DNA vaccines against DENV-3 were pVAX-DEN3 and pVAX-C2M3E344. The superior DNA vaccines against DENV-4 were pVAX-C2M3E344, pVAX-C2M4E434 and pVAX-C2M4E433. Each of these DNA vaccines could provide effective protection against infection by the corresponding DENV serotypes. This is the first study to describe the development of DNA vaccines against DENV-3 and DENV-4. However, mice immunised with a tetravalent DENV DNA vaccine, composed of a DNA vaccine encoding the prM-E protein genes from each of the four DENV serotypes (pVAX-DEN1-4), elicited high titres of neutralising antibodies against DENV-1 and DENV-3 only. Nevertheless, the results from this study suggested that a tetravalent DENV DNA vaccine, composed of pVAX-DEN1, pVAX-C2M1E122, pVAX-DEN3 and pVAX-C2M4E434, may provide effective concurrent protection against infection by each of the four DENV serotypes. In addition, mice immunised with pVAX-C2M1E122, which encoded a hybrid-E protein gene derived from DENV-1 and DENV-2, elicited high titres of anti-DENV-1 and anti-DENV-2 neutralising antibodies, and mice immunised with pVAX-C2M3E344, which encoded a hybrid-E protein gene derived from DENV-3 and DENV-4, elicited high titres of anti-DENV-3 and anti-DENV-4 neutralising antibodies. This result suggested that the co-immunisation of these two hybrid-E DNA vaccines also may provide effective concurrent protection against infection by each of the four DENV serotypes. Extracellular E proteins, believed to be in the form of recombinant subviral particles (RSPs), were recovered from the tissue culture supernatant of all DNA vaccine-transfected mammalian cells by ultracentrifugation, except for cells transfected with the pVAX-C2M2E122 hybrid-E DNA vaccine. Western blotting with the monoclonal antibody 4G2 (flavivirus cross-reactive) demonstrated that the extracellular E proteins expressed by the DNA vaccines were synthesized and cleaved in a manner similar to that of native DENV E proteins. In addition, mammalian cells transfected with pVAX-DEN1, pVAX-DEN2 or pVAX-DEN3 secreted higher amounts of extracellular E proteins than cells transfected with pVAX-DEN4. The amount of extracellular E protein secreted by pVAX-DEN4-transfected cells increased when the c-region of the prM/E signal peptidase cleavage site was made more polar. In contrast, decreasing the polarity of the c-region of the C/prM signal peptidase cleavage site of pVAX-DEN4 resulted in no detectable extracellular E proteins from pVAX-DEN4-transfected cells. This result suggested that the amount of extracellular E proteins secreted by cells transfected with DNA expressing the DENV prM-E protein genes may be dependent of the efficiency of C/prM and prM/E protein cleavages by host-derived signal peptidases. Mice immunised with the mutated pVAX-DEN4, which was capable of expressing large amounts of extracellular E proteins in vitro, produced significantly higher concentrations of Th1-type anti-DENV-4 antibodies than mice immunised with the unmodified pVAX-DEN4, but failed to produce detectable levels of anti-DENV-4 neutralising antibodies. In contrast, increasing the ratio of CpG-S to CpG-N motifs in the pVAX-DEN2 DNA vaccine by incorporating either an additional CpG-S motif, or an antibiotic resistance gene with a high ratio of CpG-S to CpG-N motifs, resulted in a significant increase in both the concentration of Th1-type anti-DENV-2 antibodies and the titres of anti-DENV-2 neutralising antibodies in immunised mice. This result suggested that increasing the amount of CpG-S motifs in DENV DNA vaccines may present an simple and effective approach to increasing the immunogenicity of the DENV DNA vaccines.
3

Einfluss posttranslationaler Modifikationen auf die Funktion des Prototyp Foamy Virus Hüllproteins

Lüftenegger, Daniel 26 March 2008 (has links)
Die Familie der Retrovirinae wird in zwei Unterfamilien untergliedert, die Orthoretrovirinae und die Spumaretrovirinae. Foamyviren stellen aufgrund einiger besonderer Eigenschaften die einzigen Vertreter dieser Unterfamilie, die sie als Bindeglied zwischen den Retroviren und den Hepadnaviren erscheinen lassen. So erfolgt beispielsweise die reverse Transkription des viralen Genoms nicht erst nach Eintritt in die Zielzelle, sondern, anders als bei Orthoretroviren, bereits in der Produzentenzelle noch während oder kurz nach der Morphogenese. Diese Eigenschaft teilen Foamyviren mit den Hepadnaviren ebenso wie die obligate Koexpression der Kapsidproteine mit den viralen Hüllproteinen für die Freisetzung von Viruspartikeln. Im Gegensatz zu Orthoretroviren sind Foamyviren folglich nicht in der Lage virusähnliche Partikel (VLP) zu sekretieren und die spezifische Funktion des PFV Env Proteins kann nicht durch heterologe Hüllproteine übernommen werden. Die Synthese des PFV Env Vorläuferproteins erfolgt am rER, wobei es eine Typ III Membrantopologie erhält, mit sowohl dem N- als auch dem C-Terminus im Zytoplasma. Während des Transports des Proteins zum Ort der Partikelknospung, wird es posttranslational im Golgi-Apparat, oder dem trans-Golgi Netzwerk, durch Furin oder eine Furin-ähnliche Protease in drei partikelassoziierte Untereinheiten prozessiert. Eine Partikelassoziation retroviraler Signalpeptide ist bislang nur für Foamyviren nachgewiesen worden, genauso wie eine essentielle Rolle dieses Proteins bei der Interaktion zwischen dem
4

Determinanten und Mechanismen der foamyviralen Partikelfreisetzung

Stange, Annett 07 May 2008 (has links) (PDF)
Die Spumaretrovirinae, mit ihrer einzigen Gattung der Foamyviren (FV), nehmen aufgrund einer recht ungewöhnlichen Replikationsstrategie und Ähnlichkeiten mit den Hepadnaviren eine Sonderstellung innerhalb der Familie der Retroviren ein. Eine Besonderheit der FV ist, daß sie für die Partikelfreisetzung, im Gegensatz zu den Orthoretroviren, die beiden strukturellen Proteine Gag und Env benötigen. Das Gag- Protein trägt alle für den Kapsidzusammenbau nötigen strukturellen Komponenten, kann jedoch durch eine fehlende Membranbindungsdomäne nicht mit Zellmembranen assoziieren. Der Membrantransport der bereits im Zytoplasma zusammen gebauten FV Kapside wird vermutlich durch das FV Env-Protein vermittelt. Das FV Hüllprotein ist jedoch auch alleine zur Freisetzung von Kapsidlosen, Hüllprotein-haltigen subviralen Partikeln (SVP) fähig. Da eine Envunabhängige Freisetzung virus-ähnlicher Partikel durch ein FV Gag-Protein mit künstlichem Membrananker möglich ist, scheint das FV Gag-Protein auch essentielle strukturelle Elemente für die Partikelfreisetzung zu enthalten. In den letzten Jahren wurden große Fortschritte in der Erforschung der Freisetzung von membranumhüllten Viren und den daran beteiligten viralen Determinanten und zellulären Mechanismen gemacht. Wobei den meist in den viralen Kapsidproteinen vorkommenden Late (L)-Domänen und deren Interaktion mit dem zellulären Proteinsortierungsweg in Multivesikuläre Körperchen (MVB) eine besondere Bedeutung zu kommt. Über die FV virale und subvirale Partikelfreisetzung und die dabei involvierten strukturellen viralen Domänen und zellulären Proteinen war jedoch bisher wenig bekannt. Im Rahmen dieser Arbeit konnte durch Mutationsanalysen von drei potentiellen L-Domän Sequenzmotiven im Prototyp FV (PFV) Gag-Protein ein, innerhalb der Primaten FV konserviertes, PSAP Konsensusmotiv als funktionelle L-Domäne charakterisiert werden. Dessen Mutation führte zu klassischen L-Domän Defekten mit verringerter Partikelfreisetzung, sowie einer elektronenmikroskopisch sichtbaren Arretierung der Virusknospung und seine Funktion war durch homo- und heterologe L-Domän Motive anderer Retroviren teilweise oder vollständig ersetzbar. Ein PPPI Motiv in PFV Gag, mit Ähnlichkeit zur L-Domän PPXY Konsensussequenz, schien jedoch keinen Einfluß auf die FV Freisetzung zu besitzen. Die Charakterisierung eines in allen FV Gag-Proteinen konservierten YXXL Motivs ließ eher auf eine wichtige Rolle beim korrekten Kapsidzusammenbau, als auf eine klassische LDomän Funktion schließen. Eine korrekte Kapsidmorphogenese schien entscheidend für die reverse Transkription des Virusgenoms zu sein. Durch Koexpression verschiedener dominant-negativer Mutanten des zellulären ESCRT-Proteinssortierungsweges konnte gezeigt werden, daß die virale Partikelfreisetzung von PFV augenscheinlich dem generellen Model der Freisetzung vieler membranumhüllter Viren über das VPS-System folgt. Eine spezifische Interaktion des PFV Gag PSAP L-Domän Motivs mit TSG101, einer frühen Komponente der ESCRT-Komplexe, verbindet PFV mit dem VPS-Sortierungsweg der Zelle. Die besondere Fähigkeit des FV Env-Proteins zur Freisetzung von SVPs wurde bereits vor einiger Zeit entdeckt, dennoch war bisher nichts über die viralen und zellulären Determinanten bekannt, die zu einer Knospung des Env-Proteins in Vesikel führten. Durch eine Reihe von Deletions- und Mutationsanalysen des PFV Env-Proteins konnten in dieser Arbeit zwei für die SVP-Freisetzung inhibitorische Abschnitte am N- und C-Terminus der zytoplasmatischen Domänen des Env- Proteins ermittelt werden. Weiterhin wurden essentielle Sequenzen im Leaderpeptid, sowie die Notwendigkeit der Membranspannenden Domäne der Transmembran- Untereinheit für die SVP-Freisetzung festgestellt. Obwohl das PFV Env-Protein kein bekanntes L-Domän Sequenzmotiv enthält, konnte ein Einfluß später Komponenten der ESCRT-Maschinerie auf die SVP-Bildung beobachtet werden. Wobei die genaue Eintrittsstelle in den VPS-Weg im Rahmen dieser Arbeit nicht definiert werden konnte. Die vorgenommen Analysen lassen vermuten, daß die Bildung von SVPs durch die Konzentration der Env-Proteine in der Zellmembranen reguliert wird. Welche genauen Mechanismen dabei zu Grunde liegen und wieweit die zelluläre Ubiquitinylierungsmaschinerie involviert ist, bedarf jedoch weiterer Erforschung. Die Ergebnisse dieser Arbeit verdeutlichen erneut die Sonderstellung der FV innerhalb der Familie der Retroviren. Auf der einen Seite folgt die foamyvirale Viruspartikelfreisetzung den typischen Mechanismen der retroviralen Virusknospung. Andererseits zeigt die Freisetzung von subviralen Partikeln, die bei keinem anderen Retrovirus bisher beobachtet wurde, eine weitere Parallele zur Replikationsstrategie der Hepadnaviren auf.
5

Determinanten und Mechanismen der foamyviralen Partikelfreisetzung

Stange, Annett 18 April 2008 (has links)
Die Spumaretrovirinae, mit ihrer einzigen Gattung der Foamyviren (FV), nehmen aufgrund einer recht ungewöhnlichen Replikationsstrategie und Ähnlichkeiten mit den Hepadnaviren eine Sonderstellung innerhalb der Familie der Retroviren ein. Eine Besonderheit der FV ist, daß sie für die Partikelfreisetzung, im Gegensatz zu den Orthoretroviren, die beiden strukturellen Proteine Gag und Env benötigen. Das Gag- Protein trägt alle für den Kapsidzusammenbau nötigen strukturellen Komponenten, kann jedoch durch eine fehlende Membranbindungsdomäne nicht mit Zellmembranen assoziieren. Der Membrantransport der bereits im Zytoplasma zusammen gebauten FV Kapside wird vermutlich durch das FV Env-Protein vermittelt. Das FV Hüllprotein ist jedoch auch alleine zur Freisetzung von Kapsidlosen, Hüllprotein-haltigen subviralen Partikeln (SVP) fähig. Da eine Envunabhängige Freisetzung virus-ähnlicher Partikel durch ein FV Gag-Protein mit künstlichem Membrananker möglich ist, scheint das FV Gag-Protein auch essentielle strukturelle Elemente für die Partikelfreisetzung zu enthalten. In den letzten Jahren wurden große Fortschritte in der Erforschung der Freisetzung von membranumhüllten Viren und den daran beteiligten viralen Determinanten und zellulären Mechanismen gemacht. Wobei den meist in den viralen Kapsidproteinen vorkommenden Late (L)-Domänen und deren Interaktion mit dem zellulären Proteinsortierungsweg in Multivesikuläre Körperchen (MVB) eine besondere Bedeutung zu kommt. Über die FV virale und subvirale Partikelfreisetzung und die dabei involvierten strukturellen viralen Domänen und zellulären Proteinen war jedoch bisher wenig bekannt. Im Rahmen dieser Arbeit konnte durch Mutationsanalysen von drei potentiellen L-Domän Sequenzmotiven im Prototyp FV (PFV) Gag-Protein ein, innerhalb der Primaten FV konserviertes, PSAP Konsensusmotiv als funktionelle L-Domäne charakterisiert werden. Dessen Mutation führte zu klassischen L-Domän Defekten mit verringerter Partikelfreisetzung, sowie einer elektronenmikroskopisch sichtbaren Arretierung der Virusknospung und seine Funktion war durch homo- und heterologe L-Domän Motive anderer Retroviren teilweise oder vollständig ersetzbar. Ein PPPI Motiv in PFV Gag, mit Ähnlichkeit zur L-Domän PPXY Konsensussequenz, schien jedoch keinen Einfluß auf die FV Freisetzung zu besitzen. Die Charakterisierung eines in allen FV Gag-Proteinen konservierten YXXL Motivs ließ eher auf eine wichtige Rolle beim korrekten Kapsidzusammenbau, als auf eine klassische LDomän Funktion schließen. Eine korrekte Kapsidmorphogenese schien entscheidend für die reverse Transkription des Virusgenoms zu sein. Durch Koexpression verschiedener dominant-negativer Mutanten des zellulären ESCRT-Proteinssortierungsweges konnte gezeigt werden, daß die virale Partikelfreisetzung von PFV augenscheinlich dem generellen Model der Freisetzung vieler membranumhüllter Viren über das VPS-System folgt. Eine spezifische Interaktion des PFV Gag PSAP L-Domän Motivs mit TSG101, einer frühen Komponente der ESCRT-Komplexe, verbindet PFV mit dem VPS-Sortierungsweg der Zelle. Die besondere Fähigkeit des FV Env-Proteins zur Freisetzung von SVPs wurde bereits vor einiger Zeit entdeckt, dennoch war bisher nichts über die viralen und zellulären Determinanten bekannt, die zu einer Knospung des Env-Proteins in Vesikel führten. Durch eine Reihe von Deletions- und Mutationsanalysen des PFV Env-Proteins konnten in dieser Arbeit zwei für die SVP-Freisetzung inhibitorische Abschnitte am N- und C-Terminus der zytoplasmatischen Domänen des Env- Proteins ermittelt werden. Weiterhin wurden essentielle Sequenzen im Leaderpeptid, sowie die Notwendigkeit der Membranspannenden Domäne der Transmembran- Untereinheit für die SVP-Freisetzung festgestellt. Obwohl das PFV Env-Protein kein bekanntes L-Domän Sequenzmotiv enthält, konnte ein Einfluß später Komponenten der ESCRT-Maschinerie auf die SVP-Bildung beobachtet werden. Wobei die genaue Eintrittsstelle in den VPS-Weg im Rahmen dieser Arbeit nicht definiert werden konnte. Die vorgenommen Analysen lassen vermuten, daß die Bildung von SVPs durch die Konzentration der Env-Proteine in der Zellmembranen reguliert wird. Welche genauen Mechanismen dabei zu Grunde liegen und wieweit die zelluläre Ubiquitinylierungsmaschinerie involviert ist, bedarf jedoch weiterer Erforschung. Die Ergebnisse dieser Arbeit verdeutlichen erneut die Sonderstellung der FV innerhalb der Familie der Retroviren. Auf der einen Seite folgt die foamyvirale Viruspartikelfreisetzung den typischen Mechanismen der retroviralen Virusknospung. Andererseits zeigt die Freisetzung von subviralen Partikeln, die bei keinem anderen Retrovirus bisher beobachtet wurde, eine weitere Parallele zur Replikationsstrategie der Hepadnaviren auf.
6

Foamy Virus Budding and Release

Hütter, Sylvia, Zurnic, Irena, Lindemann, Dirk 28 November 2013 (has links) (PDF)
Like all other viruses, a successful egress of functional particles from infected cells is a prerequisite for foamy virus (FV) spread within the host. The budding process of FVs involves steps, which are shared by other retroviruses, such as interaction of the capsid protein with components of cellular vacuolar protein sorting (Vps) machinery via late domains identified in some FV capsid proteins. Additionally, there are features of the FV budding strategy quite unique to the spumaretroviruses. This includes secretion of non-infectious subviral particles and a strict dependence on capsid-glycoprotein interaction for release of infectious virions from the cells. Virus-like particle release is not possible since FV capsid proteins lack a membrane-targeting signal. It is noteworthy that in experimental systems, the important capsid-glycoprotein interaction could be bypassed by fusing heterologous membrane-targeting signals to the capsid protein, thus enabling glycoprotein-independent egress. Aside from that, other systems have been developed to enable envelopment of FV capsids by heterologous Env proteins. In this review article, we will summarize the current knowledge on FV budding, the viral components and their domains involved as well as alternative and artificial ways to promote budding of FV particle structures, a feature important for alteration of target tissue tropism of FV-based gene transfer systems.
7

Foamy Virus Budding and Release

Hütter, Sylvia, Zurnic, Irena, Lindemann, Dirk 28 November 2013 (has links)
Like all other viruses, a successful egress of functional particles from infected cells is a prerequisite for foamy virus (FV) spread within the host. The budding process of FVs involves steps, which are shared by other retroviruses, such as interaction of the capsid protein with components of cellular vacuolar protein sorting (Vps) machinery via late domains identified in some FV capsid proteins. Additionally, there are features of the FV budding strategy quite unique to the spumaretroviruses. This includes secretion of non-infectious subviral particles and a strict dependence on capsid-glycoprotein interaction for release of infectious virions from the cells. Virus-like particle release is not possible since FV capsid proteins lack a membrane-targeting signal. It is noteworthy that in experimental systems, the important capsid-glycoprotein interaction could be bypassed by fusing heterologous membrane-targeting signals to the capsid protein, thus enabling glycoprotein-independent egress. Aside from that, other systems have been developed to enable envelopment of FV capsids by heterologous Env proteins. In this review article, we will summarize the current knowledge on FV budding, the viral components and their domains involved as well as alternative and artificial ways to promote budding of FV particle structures, a feature important for alteration of target tissue tropism of FV-based gene transfer systems.

Page generated in 0.0749 seconds