• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 13
  • 11
  • 8
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 17
  • 16
  • 12
  • 11
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Role mitochondriálního komplexu II v biologii nádorové buňky / The role of mitochondrial complex II in cancer cell biology

Kraus, Michal January 2021 (has links)
Mitochondria are essential organelles for most eukaryotic cells, containing intricate networks of numerous proteins. These include, among others, complexes I-IV of the electron transport chain. Being at the crossroads of the tricarboxylic acid cycle and the respiratory chain, mitochondrial complex II plays a key role in cellular metabolism. The protein complex, also known as succinate dehydrogenase, is capable of not only succinate oxidation and electron transfer but also contributes to the production of reactive oxygen species. Mitochondrial complex II consists of four subunits, SDHA-D, and four dedicated protein assembly factors SDHAF1-4 that participate in complex II biogenesis. Mutations and epigenetic modulations of genes coding for succinate dehydrogenase subunits or assembly factors are associated with pathological conditions such as neurodegenerative diseases, or may result in tumor formation. However, inborn complex-II-linked mitochondrial pathologies are rather understudied, compared to diseases with causative errors of other mitochondrial complexes, presumably due to the fact that none of complex II subunits is encoded in the mitochondrial genome. Recent studies have shown that impairment of mitochondrial complex II function or assembly leads to accumulation of alternative assembly forms...
32

Water vapour permeability of bio-based polymers

Duan, Zhouyang January 2013 (has links)
This project investigates the moisture barrier properties of bio-based polymers and ways of improving them. The first section addresses the effect of crystallinity on the water permeability of poly(lactic acid) (PLA). The second section investigates PLA/talc composites and PLA/ montmorillonite nanocomposites. The third section is focused on a new polymer, polybutylene succinate (PBS), and its nanocomposites with montmorillonite. In the first section, the water vapour transmission rates (WVTR) through samples of polylactic acid of different crystallinities have been measured. Three different grades of commercial PLA were used with different ratios of L-lactide and D-lactide to give a range of crystallinities from 0 to 50%. Sheets of PLA were prepared by melt compounding followed by compression moulding and annealing at different temperatures and for different times to give the range of crystallinities required. Crystallinity was measured by differential scanning calorimetry (DSC) and the morphology of the samples was observed under crossed polars in a transmitted light microscope. Water vapour transmission rates through the films were measured at 38°C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased linearly with increasing crystallinity of the PLA from 0 to 50%. The results are discussed in terms of the effect of crystallinity on solubility and shown to fit the tortuous path model. The model was also successfully used to explain published data on water permeability of polyethylene terephthalate. In the second section, a series of PLA/talc composites and PLA/ montmorillonite nanocomposites were prepared by melt compounding followed by compression moulding. The morphologies of the composites were investigated using transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD) and it was found that the fillers were well dispersed in the polymer matrix. The average aspect ratio of the compounded talc was found to be 8, and that of the nanoclay was found to be 50. Water vapour transmission rates (WVTR) through the films were measured at 38°C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased with increasing filler content and the results gave good agreement with predictions from the Nielsen tortuous path model. In the third section, PBS/ montmorillonite nanocomposites were prepared by melt compounding followed by compression moulding. The melting and crystallisation behaviour of the pure PBS samples were investigated using differential scanning calorimetry (DSC) and cross polarised optical microscopy. A slight decrease of the degree of crystallinity was found in PBS containing 5% nanoclay. The morphology of the composites was investigated using transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD) and it was confirmed that that composite structures were intercalated. Water vapour transmission rates (WVTR) through the PBS sheets were measured using a MOCON Permatran-W®398. The measured values of WVTR decreased with increasing nanoclay content. However, the experimental values were all higher than the values predicted by the Nielsen tortuosity model. This result shows that in the case of PBS, which is a highly crystalline polymer, the nanoclay is not as well dispersed and is not as effective in reducing water vapour permeability as in the case of PLA.
33

Mechanistic insights into the function of the mitochondrial uncoupling protein in Caenorhabditis elegans

Pfeiffer, Matthew Edwin 27 October 2010 (has links)
The prototype uncoupling protein 1 (UCP1) mediates proton leak-dependent thermogenesis in mammals, but the physiological functions of the novel UCP2-5 are unclear. Nematodes only express one uncoupling protein that is most similar to UCP4 in the human brain, which is believed to be the most evolutionarily conserved of the uncoupling proteins. Consistent with reported UCP functions in mammals, we observed that ceUCP4-null nematodes had decreased metabolic rates and increased adiposity compared to wild type. Surprisingly, these phenotypes corresponded to decreased succinate-mediated mitochondrial respiration without apparent changes in mitochondrial uncoupling. ceUCP4-null mitochondria exhibited normal electron transport chain functions, but had a decreased capacity for succinate import. Supporting the functional importance of ceUCP4-dependent complex II regulation in vivo, ceUCP4 deficiency was demonstrated to result in a selectively lethal response to genetic and pharmacological inhibition of Complex I. Similarly, ceUCP4-deficiency significantly prolonged lifespan in the short-lived mev-1 mutant that generates deleterious complex II-derived reactive oxidants. These results define a new physiological function for the ancestral ceUCP4 in the regulation of complex II-mediated oxidative phosphorylation through an unexpected effect on mitochondrial succinate transport. The data described in this dissertation also describe a novel mechanism by which uncoupling proteins mediate mitochondrial bioenergetics. / text
34

Mechanisms regulating the thermal acclimation of dark respiration in snow tussock and ryegrass

Clifford, Veronica Rose January 2007 (has links)
The aim of this research was to identify the mechanisms that underpin changes in respiratory capacity during acclimation to temperature. Dark respiration, enzyme activities and leaf ultrastructure were measured from ryegrass (Lolium perenne) in controlled environmental chambers and two species of native grass (Chionochloa rubra & C. pallens) growing at different altitudinal ranges on Mount Hutt, Canterbury, New Zealand. The overall hypothesis was that the changes in both mitochondrial numbers and enzyme activity underpin the greater respiratory capacity observed in response to decreasing temperatures. Gas exchange measurements were carried out to measure rates of dark respiration (Rd) in leaves of both ryegrass and tussocks. Respiratory homeostasis (full acclimation) was achieved in ryegrass leaves but only partial acclimation in both species of tussock plants. Dark respiration rates for warm-grown ryegrass were greatly reduced compared to cool-grown grasses. Rd was lower for C. rubra growing at the base of the mountain (450m) compared to plants at a higher altitude (1060m). The dark respiration rates were also lower for C. pallens growing at 1070m than at 1600m. When comparing Rd between high and low altitude plants, it was significantly lower in low altitude plants at 450m than at 1600m. Oxygen consumption was measured in intact leaves and roots, crude mitochondria and isolated mitochondria from ryegrass to investigate whether a change in respiratory capacity was involved with changes in Rd. Mitochondrial respiratory capacity was slightly reduced in warm leaves and roots (not significantly). The respiratory capacity results from isolated mitochondria for C. rubra (at 450m and 1060m) and C. pallens (at 1070m and 1600m) were consistent with the hypothesis that plants from warm sites have lower respiratory capacity in comparison to plants from cool sites. Based on these results and those of previous studies, it was concluded that respiratory flux for any given temperature is not simply determined by maximal capacities of the respiratory apparatus but rather a combination of the availability of substrate supply, the demand for respiratory products (i.e. ATP) and/or the maximal capacity of respiratory enzymes. Utilizing transmission electron micrographs, it was found that mitochondria were significantly less abundant in warm-grown than cool-grown ryegrass mesophyll cells. Mitochondria dimensions increased slightly between the cool and warm treatment. At lower altitudes (C. rubra), there was a significant decrease in mitochondria numbers with decreasing elevation. At higher altitudes (C. pallens), there was no noticeable change in mitochondria numbers between 1070m and 1600m. It was concluded that mitochondrial abundance for the controlled and field experiments, and mitochondrial sizes in the field, were associated with changes in Rd. The maximal activities of fumarase and succinate dehydrogenase (SDH) in isolated mitochondria from leaves of ryegrass and tussock were measured spectrophotometrically. The results in the controlled experiment indicate that enzymes other than fumarase and SDH could be responsible for the increased respiratory capacity observed in cold acclimated leaves of ryegrass. However, fumarase maximal activity was significantly reduced in C. rubra at low altitude compared with C. pallens growing at high altitude - this suggests that it may be involved in the differences in respiratory capacity and Rd between the two sites. Succinate dehydrogenase did not differ significantly in response to altitude. The large difference between the two field sites for fumarase activity is comparable to the large difference in Rd and reduction in mitochondrial abundance and dimensions seen between the two sites. This supports the overall hypothesis that cool-grown plants keep up with energy demands at low temperatures by increasing enzyme concentrations/capacity. The results of this study are supportive of the hypothesis that growth in low altitudes and warm conditions will result in the reduction of Rd as a consequence of: (1) temperature sensitivity of the respiratory apparatus, resulting in the reduction of the respiratory capacities of mitochondria; (2) a reduction in mitochondria size and numbers; and as a consequence of this (3) a reduction in the activities of mitochondrial enzymes. However, these responses are species specific and vary according to the range of temperatures experienced by plants in the field and controlled environments.
35

Síntese e avaliação da segurança in vitro da rutina e do succinato de rutina visando sua incorporação em formulações fotoprotetoras eficazes associados a filtros químicos e físico / Synthesis and in vitro safety evaluation of rutin and rutin succinate aiming their incorporation into effective sunscreens associated with chemical and physical filters

Moraes, Carla Aparecida Pedriali 22 March 2012 (has links)
A tendência atual do mercado cosmético é desenvolver produtos que contenham insumos de origem vegetal. O objetivo deste trabalho foi a aplicação da Tecnologia da Química Verde na síntese da rutina visando o aumento da estabilidade dessa em formulações cosméticas com sua eficácia antioxidante e fotoprotetora. Realizou-se a síntese química por meio da introdução de grupos carboxilatos às hidroxilas do dissacarídeo na molécula de rutina, gerando como produto final o succinato de rutina. Este derivado e/ou a rutina foram incorporados em 74 formulações-teste e, selecionadas 12 (sistemas emulsionados O/A), após serem submetidas à Avaliação Preliminar de Estabilidade (APE) e ao Teste de Estabilidade Acelerada (TEA), sob variações de temperatura e umidade. Utilizou-se agentes emolientes e silicones para facilitar a solubilização e/ou dispersão dos filtros químicos e físicos. A segunda etapa deste trabalho foi a avaliação da segurança do succinato de rutina, tendo como padrão a rutina, por meio do método alternativo de toxicidade in vitro, o XTT. Após o screening das concentrações ensaiadas, as que apresentaram menor nível de morte celular foram respectivamente, 0,1% ou 1 mg/mL (rutina) e 0,4% ou 4 mg/mL (succinato de rutina). Segundo os resultados do TEA, as formulações contendo succinato de rutina associada ou não aos filtros solares em ambas as bases cosméticas (A - Crodafos®CES + Uniox®C e B - Hostacerin®SAF) foram selecionadas para a continuidade do Teste de Estabilidade Normal (TEN). Neste teste, as emulsões fotoprotetoras foram avaliadas frente aos parâmetros: propriedades organolépticas (aspecto, cor e odor), aspectos físico-químicos (medição de pH e de viscosidade) e funcionais (atividade antirradicalar e eficácia fotoprotetora in vitro). Os resultados apresentados pela formulação MS (succinato de rutina associado aos filtros químicos e físico) foram: homogeneidade, a não modificação de cor e odor em temperatura ambiente, a não alterações significativas de valores de pH, de área de histerese, de atividade antirradicalar e de FPS. Esta estabilidade ocorreu principalmente quando incorporada à base cosmética A num período de 90 dias em 45ºC e 75% de umidade, 5ºC e 25ºC. Concluiu-se que a funcionalidade desta associação MS mostrou-se mais estável, mantendo a eficácia quanto à proteção solar e dentro de suas características reológicas poderia ser a mais bem aceita pelo consumidor. / The current cosmetic market trend is to develop products containing vegetables raw materials. This work proposed to use the Technology of Green Chemical to increase the rutin stability in cosmetic formulas as regards of its antioxidant and photoprotective properties. The chemical synthesis was realized by the introduction of carboxylate groups on sugar moiety of rutin producing in rutin succinate. This derivative and/or rutin were incorporated into 74 test formulas. After the undergoing to preliminary and accelerated stabilities under different temperature and humidity conditions were selected 12 formulas (O/W emulsions). Emollient agents and silicones were used to improve the solubility and/or dispersion of the chemical and physical filters. The second stage of this work was to evaluate the safety of rutin succinate, rutin used as an internal standard, using the alternative method of in vitro toxicity, the XTT. After the screening of tested concentrations, the concentrations of the samples with the lowest level of cell death were 0.1% or 1 mg/mL (rutin) and 0.4% or 4 mg/mL (rutin succinate), respectively. According to results obtained in accelerated stability testing, the formulations containing rutin succinate in combination or not with UV filters in both O/W emulsions (A - Crodafos®CES + Uniox®C and B - Hostacerin®SAF) were selected for the long term stability test. In this test the sunscreens were evaluated in the following parameters: the organoleptic properties (appearance, color and odor), physico-chemical aspects (pH value and viscosity) and functional (antiradicalar activity and in vitro photoprotection efficacy). The results presented by the MS formula (rutin succinate associated with physical filter and chemical filters) were: uniformity, stability of color and odor at room temperature and showed no significant difference, as well stability in: pH and SPF (Sun Protection Factor) values, hysteresis area, antiradicalar activity. These results were observed mainly when it was incorporated to O/W emulsion A (90 days of analyses at 45°C and 75% humidity, 5°C and 25°C). It was observed the functionality of MS association was more stable, maintaining photoprotective efficacy and within their rheological properties could be more accepted by consumers.
36

Síntese e avaliação da segurança in vitro da rutina e do succinato de rutina visando sua incorporação em formulações fotoprotetoras eficazes associados a filtros químicos e físico / Synthesis and in vitro safety evaluation of rutin and rutin succinate aiming their incorporation into effective sunscreens associated with chemical and physical filters

Carla Aparecida Pedriali Moraes 22 March 2012 (has links)
A tendência atual do mercado cosmético é desenvolver produtos que contenham insumos de origem vegetal. O objetivo deste trabalho foi a aplicação da Tecnologia da Química Verde na síntese da rutina visando o aumento da estabilidade dessa em formulações cosméticas com sua eficácia antioxidante e fotoprotetora. Realizou-se a síntese química por meio da introdução de grupos carboxilatos às hidroxilas do dissacarídeo na molécula de rutina, gerando como produto final o succinato de rutina. Este derivado e/ou a rutina foram incorporados em 74 formulações-teste e, selecionadas 12 (sistemas emulsionados O/A), após serem submetidas à Avaliação Preliminar de Estabilidade (APE) e ao Teste de Estabilidade Acelerada (TEA), sob variações de temperatura e umidade. Utilizou-se agentes emolientes e silicones para facilitar a solubilização e/ou dispersão dos filtros químicos e físicos. A segunda etapa deste trabalho foi a avaliação da segurança do succinato de rutina, tendo como padrão a rutina, por meio do método alternativo de toxicidade in vitro, o XTT. Após o screening das concentrações ensaiadas, as que apresentaram menor nível de morte celular foram respectivamente, 0,1% ou 1 mg/mL (rutina) e 0,4% ou 4 mg/mL (succinato de rutina). Segundo os resultados do TEA, as formulações contendo succinato de rutina associada ou não aos filtros solares em ambas as bases cosméticas (A - Crodafos®CES + Uniox®C e B - Hostacerin®SAF) foram selecionadas para a continuidade do Teste de Estabilidade Normal (TEN). Neste teste, as emulsões fotoprotetoras foram avaliadas frente aos parâmetros: propriedades organolépticas (aspecto, cor e odor), aspectos físico-químicos (medição de pH e de viscosidade) e funcionais (atividade antirradicalar e eficácia fotoprotetora in vitro). Os resultados apresentados pela formulação MS (succinato de rutina associado aos filtros químicos e físico) foram: homogeneidade, a não modificação de cor e odor em temperatura ambiente, a não alterações significativas de valores de pH, de área de histerese, de atividade antirradicalar e de FPS. Esta estabilidade ocorreu principalmente quando incorporada à base cosmética A num período de 90 dias em 45ºC e 75% de umidade, 5ºC e 25ºC. Concluiu-se que a funcionalidade desta associação MS mostrou-se mais estável, mantendo a eficácia quanto à proteção solar e dentro de suas características reológicas poderia ser a mais bem aceita pelo consumidor. / The current cosmetic market trend is to develop products containing vegetables raw materials. This work proposed to use the Technology of Green Chemical to increase the rutin stability in cosmetic formulas as regards of its antioxidant and photoprotective properties. The chemical synthesis was realized by the introduction of carboxylate groups on sugar moiety of rutin producing in rutin succinate. This derivative and/or rutin were incorporated into 74 test formulas. After the undergoing to preliminary and accelerated stabilities under different temperature and humidity conditions were selected 12 formulas (O/W emulsions). Emollient agents and silicones were used to improve the solubility and/or dispersion of the chemical and physical filters. The second stage of this work was to evaluate the safety of rutin succinate, rutin used as an internal standard, using the alternative method of in vitro toxicity, the XTT. After the screening of tested concentrations, the concentrations of the samples with the lowest level of cell death were 0.1% or 1 mg/mL (rutin) and 0.4% or 4 mg/mL (rutin succinate), respectively. According to results obtained in accelerated stability testing, the formulations containing rutin succinate in combination or not with UV filters in both O/W emulsions (A - Crodafos®CES + Uniox®C and B - Hostacerin®SAF) were selected for the long term stability test. In this test the sunscreens were evaluated in the following parameters: the organoleptic properties (appearance, color and odor), physico-chemical aspects (pH value and viscosity) and functional (antiradicalar activity and in vitro photoprotection efficacy). The results presented by the MS formula (rutin succinate associated with physical filter and chemical filters) were: uniformity, stability of color and odor at room temperature and showed no significant difference, as well stability in: pH and SPF (Sun Protection Factor) values, hysteresis area, antiradicalar activity. These results were observed mainly when it was incorporated to O/W emulsion A (90 days of analyses at 45°C and 75% humidity, 5°C and 25°C). It was observed the functionality of MS association was more stable, maintaining photoprotective efficacy and within their rheological properties could be more accepted by consumers.
37

Pharmaceutical Properties of Nanoparticulate Formulation Composed of TPGS and PLGA for Controlled Delivery of Anticancer Drug

Mu, L., Chan-Park, Mary Bee-Eng, Yue, Chee Yoon, Feng, S.S. 01 1900 (has links)
A suitable management of the pharmaceutical property is needed and helpful to design a desired nanoparticulate delivery system, which includes the carrier nature, particle size and size distribution, morphology, surfactant stabiliser according to the technique applied, drug-loading ratio and encapsulation efficiency, surface property, etc. All will influence the in vitro release, in vivo behaviour and tissue distribution of administered particulate drug loaded nanoparticles. The main purpose of the present work was to determine the effect of drug loading ratio when employing TPGS as surfactant stabiliser and/or matrix material to improve the nanoparticulate formulation. The model drug employed was paclitaxel. / Singapore-MIT Alliance (SMA)
38

Élaboration de matériaux à base de farine de maïs : évaluation et compréhension des relations entre structure et cinétique de biodégradation

Jbilou, Fouzia 29 April 2011 (has links) (PDF)
Dans le but de développer des matériaux à partir d'une ressource renouvelable de moindre coût que l'amidon, des matériaux à base de farine de maïs ont été élaborés par extrusion-injection. La caractérisation des propriétés physico-chimiques de ces matériaux a révélé que le taux de glycérol (ajouté à la farine de maïs en tant que plastifiant) et le profil des zones de cisaillement employé lors de l'extrusion influencent significativement le taux de déstructuration de l'amidon et des protéines de la farine de maïs. Ceci a pu être établi en croisant notamment les résultats de l'analyse par diffraction aux rayons X, par spectroscopie infra-rouge à transformée de Fourier, de l'analyse calorimétrique différentielle à balayage à des observations par microscopie confocale à balayage laser des matériaux. De plus, le suivi des cinétiques d'hydrolyse en sucres réducteurs de l'amidon par des enzymes amylolytiques en présence et en absence d'enzymes protéolytiques a pu être relié à la déstructuration des protéines. Les matériaux obtenus présentent cependant des inconvénients rédhibitoires pour certaines applications comme l'hygroscopie élevée et le vieillissement rapide dans le temps. L'ajout de polybutylène succinate (PBS) au mélange farine-glycérol a cependant permis de conduire à une amélioration des propriétés mécaniques et à une réduction de l'hygroscopie de ces matériaux. Les observations de la morphologie de ces matériaux par microscopie électronique à balayage ont montré que la farine de maïs et le PBS sont incompatibles et présentent une morphologie qui varie selon le taux de PBS dans le mélange (30, 50 ou 70%). L'étude de la cinétique d'hydrolyse de l'amidon de la farine de maïs par des enzymes amylolytiques a permis de mettre en évidence l'influence de plusieurs facteurs : (i) la cristallinité de l'amidon, (ii) l'aire spécifique, (iii) la porosité et (iv) la morphologie des matériaux. De plus, l'évaluation de la biodégradation par voie microbienne en milieu liquide et solide par voie aérobie ou anaérobie a montré les mêmes tendances globales que les résultats obtenus par voie enzymatique. Ainsi, les matériaux élaborés à partir des formulations présentant des proportions de PBS excédant 50 % ne sont pas biodégradables au sens de la norme ISO 14855/1999 et sont également faiblement hydrolysés par les enzymes amylolytiques.
39

Correlation between Myocardial Blood Flow and Tissue Succinate during Acute Ischemia

SAKAMOTO, NOBUO, MATSUBARA, TATSUAKI, KATO, KYOJI 25 March 1994 (has links)
名古屋大学博士学位論文 学位の種類 : 博士(医学)(論文) 学位授与年月日:平成5年9月14日 加藤亨嗣氏の博士論文として提出された
40

Life Cycle Assessment of a Hybrid Poly Butylene Succinate Composite

Moussa, Hassan 24 January 2015 (has links)
Poly butylene succinate (PBS) is a biodegradable plastic polymer that has physical and mechanical properties similar to common petroleum plastics like polypropylene (PP) and polyethylene (PE). PBS may be produced from petroleum or bio-based feedstocks, or by a hybrid combination of petroleum and bio-based resources. Producers are reducing content of petroleum components used for the production of PBS, and by doing so are seeking potential environmental performance improvements. In this study, ???hybrid??? PBS refers to the production of PBS polymer from bio-based succinic acid (SAC) sourced from sorghum and petroleum-based 1, 4-butanediol (BDO). Given its biodegradability, PBS is commercially used for compostable bags and agricultural mulching film applications. A recent study in Ontario identified composite materials made with PBS blended with natural fibres like switchgrass (SG) as promising for applications in automotive products. Such novel composite materials are touted as potential bio-based alternatives to conventional petroleum-based plastics. Of the few studies that have considered the environmental performance of PBS materials, none have assessed the potential environmental impacts of a hybrid PBS composite. Therefore, this study undertook a life cycle assessment (LCA) of SG reinforced hybrid PBS composite (hybrid composite). LCA is an environmental management technique that is used to assess environmental aspects (inputs and outputs) and potential environmental impacts of a product or service throughout its life cycle. The analysis considered a cradle-to-gate system boundary and evaluated eleven environmental performance indicators. The environmental performance of the hybrid composite was compared to a conventional glass fibre (GF) reinforced polypropylene (PP) composite (baseline composite), a material that is widely used in automotive components. Results showed that the production of the hybrid composite in comparison to the baseline composite decreased potential impact for most of the assessed indicators: cumulative energy demand by 40%, waste heat by 23%, global warming potential by 35%, smog by 2%, carcinogens by 54%, non-carcinogens by 172%, respiratory effects by 22% and ecotoxicity by 45%. Increases in the values of impact indicators were apparent for ozone depletion, acidification, and eutrophication by 43%, 16%, and 322%, respectively. Analysis revealed that dominant influences on results were not related directly to the bio-based make-up. Rather, the biggest influence on the environmental performance of composite production were the sources of heat used in petroleum-based materials, the energy mix in electricity for bio-based materials, the type of reinforcing fibre and the co-product treatment methodology used. The study helps fill a gap in knowledge regarding bio-based chemicals and hybrid biodegradable plastic composites, and points to opportunities for future research on feedstocks for industrial composite materials. The importance of this study is that it helps to identify the environmental strengths and weaknesses associated with the production of the hybrid composite specifically, and bio-based materials more generally. It points to alternative material substitution options for use in the automotive industry. In this study, life cycle assessment exemplifies multidisciplinary methodologies, which seek to traverse the boundaries between the social and natural sciences and disciplines to support more sustainable policy decisions for a bio-economy. The systematic nature and the widely applicable consequences of this LCA study have the potential to contribute to industrial and business management, and reach the public policy arena in an effort to drive environmental and social change.

Page generated in 0.0449 seconds