• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 8
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 59
  • 47
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Influence of methyl substitution on the anhydride mediated reaction between succinic acid and aniline

McRae, John Donald, January 1964 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1964. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
12

Extractive polyesterification

Keister, William Pierce, January 1969 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1969. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
13

Optimization and kinetics study of solvent pretreatment of South African corn cob for succinic acid production

Mudzanani, Khuthadzo Edna January 2018 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering. October 2017 / Increasing concerns over environmental and geo-political issues on resources’ sustainability have driven the industries to shift their efforts to produce chemicals from renewable biomass. Amongst the lignocellulosic biomass, corncob contains cellulose, hemicellulose and lignin that are built in a compact structure which makes it difficult to access. Pre-treatment is then applied to make the content to be accessible to enzymatic hydrolysis which breaks down the polysaccharides to monomers. The sugar monomers can be converted to a wide range of bioproducts such as biofuels and bio-chemicals. The objective of the study was to determine, evaluate and optimize the best solvent system to pre-treat corn cob. In addition, the study evaluated the effect of pre-treatment parameters on the yield of cellulose and hemicellulose and attempt to develop a kinetic model to explain the dissolution. Lithium perchlorate, zinc chloride, phosphoric acid, sulphuric acid and sodium hydroxide were used during the pre-treatment, which was carried out at 70-80 ° C for 6 hours. Characterization of pre-treated samples showed a significant change in structure after pretreatment indicating disruption in cell wall of the lignocellulosic material. FTIR revealed a reduction in phenolic group; indicating that the lignin content has been reduced. The XRD patterns show that crystallinity was considerably reduced; this was shown by an increase in calculated crystallinity index (CrI) after LiClO4, ZnCl2, H3PO4 and NaOH pre-treatment. The CrI of raw corncob (CrI= 32.7%) increased to 46.2 %, 42.3 %, 55.6 % and 53.4 % of LiClO4, ZnCl2, H3PO4 and NaOH, respectively. The crystallinity index increased for pre-treated material, indicating that the amorphous cellulose is dissolved in the liquor, as well as lignin and hemicellulose removal This study has shown that LiClO4.2H2O pretreatment agent is an efficient solvent system to pretreat corncob which consecutively increase the accessibility of cellulose and hemicellulose from the solid fractions. The accessibility was confirmed by an ease hydrolysis of cellulose & hemicellulose to glucose & xylose respectively. An increase of nearly four times compared to the untreated corncob. The effect of reaction operating parameters i.e. Reaction time, temperature and solvent concentration was carried out and then optimized by response surface methodology (RSM) using Minitab 16. The target was to maximize the yield of cellulose and hemicellulose. It was discovered that the increase in temperature and reaction time increase the accessibility of cellulose and hemicellulose until an equilibrium is reached at 3 & half hours and 176 °c. The pretreatment solvent concentration was discovered to have an effect on the accessibility but not as much as temperature and time. The best pretreatment conditions to obtain high polysaccharides conversions to monomers were at 176°c for 3.5 hours using LiClO4.2H2O for 10 g of corncob. The results obtained from RSM were used to evaluate the temperatures profile, kinetic model for the corncob pretreatment as a function of temperature. The kinetics of pretreatment were studied by the amount of glucose, xylose and the lignin removed from the pretreated solids. The kinetic model of lignin removal and sugars accessibility was identified as a first-order reaction corresponding to the bulk phase for pretreatment time up to 24 hours. The rate constant results show that the kinetic rate increased with temperature. The activation energy for glucose, xylose and lignin were calculated to be 15.0 kJ/mol, 14.2 kJ/mol and 36.54 kJ/mol, respectively. / MT 2018
14

Remediation of heavy-metal contaminated soils using succinic acid

Kaul, Arvind 15 September 1992 (has links)
Succinic acid, a low molecular weight dicarboxylic acid was used to leach out heavy metals from Willamette Valley soil (contaminated separately with lead, copper, and zinc) in form of water-soluble organo-metal complexes. The research tasks included developing synthetic contaminated soils representative of those found at Superfund sites and making heavy metal adsorption and desorption studies. Fixed amounts of single-metal contaminated soil were treated with succinic acid under varying conditions of pH and organic ligand concentration. Based on the total metal mobilized into the aqueous phase, the optimum values of pH and organic acid were established for each metal. Since the direct determination of all species solubilized by the organic acid solution was not possible, a computer speciation program called MICROQL was used to determine the concentration of metal species in solution containing several metals and potential ligands. The results indicate that succinic acid is capable of significantly altering the partitioning of metals between the soil and the aqueous phase. Higher concentrations of the organic acid resulted in higher removal of metal from the soil. In case of lead and copper, low pH (3.5) succinic acid flushing solution was found to be the most effective, while a pH range of 4.5-5.5 was deemed optimum for zinc. The results also established that the extent of removal of any metal depended not only upon the the stability constant of the organo-metal complex, but also on its mode of retention within the soil. / Graduation date: 1993
15

The Effect of a Ketogenic Diet in the Treatment of Succinic Semialdehyde Dehydrogenase Deficiency in Mice

Nylen, Kirk 20 January 2009 (has links)
Succinic semialdehyde dehydrogenase (ALDH5A1) deficiency (SSADH-d) is an autosomal recessive, inborn error of gamma-aminobutyric acid (GABA) metabolism that results in psychomotor retardation, ataxia and seizures. A mouse model of SSADH-d (the Aldh5a1-/- mouse) was created to study the pathophysiology and treatment of SSADH-d. Aldh5a1-/- mice have psychomotor retardation and a progressive seizure phenotype results in death around P25. The present experiments tested the effects of a ketogenic diet in the treatment of Aldh5a1-/- mice. The KD was found to prolong the lives of Aldh5a1-/- mice by >300% while significantly delaying the onset the ataxia and preventing weight loss that is seen in untreated Aldh5a1-/- mice. Electrophysiological recordings revealed a corresponding decrease in seizures in KD fed mutants, as compared to control diet (CD) fed mutants. We assessed spontaneous miniature postsynaptic currents (mPSC) in CD and KD fed mutants. We found that CD fed mutants had significantly decreased inhibitory mPSC (mIPSC) activity compared to CD fed wildtype controls. mIPSC activity was restored in KD fed Aldh5a1-/- mice. A similar effect was found in [35S]TBPS binding experiments. TBPS binding was significantly reduced in CD fed Aldh5a1-/- mice, but restored in KD fed mutants. Plasma analysis revealed that an elevation of serum beta-hydroxybutyrate may play a role in the KD’s effects. The KD led to a significant elevation in the number of hippocampal mitochondria in mutant mice. Further, the KD was able to normalize the deficiencies in the hippocampal ATP levels seen in the Aldh5a1-/- mice. The present data suggest that the KD is able to significantly improve the Aldh5a1-/- phenotype. The effect of the KD on mIPSC activity is novel and furthers our understanding of how the KD may exert its effects. The mitochondrial studies confirm the findings of others, that the KD elevates the number of mitochondria. The KD also restores ATP deficiencies in Aldh5a1-/- mice, which is a novel finding. Together, these show that the KD may be an effective treatment for SSADH-d in humans. These data also further our understanding of the KD’s mechanisms of action.
16

The Effect of a Ketogenic Diet in the Treatment of Succinic Semialdehyde Dehydrogenase Deficiency in Mice

Nylen, Kirk 20 January 2009 (has links)
Succinic semialdehyde dehydrogenase (ALDH5A1) deficiency (SSADH-d) is an autosomal recessive, inborn error of gamma-aminobutyric acid (GABA) metabolism that results in psychomotor retardation, ataxia and seizures. A mouse model of SSADH-d (the Aldh5a1-/- mouse) was created to study the pathophysiology and treatment of SSADH-d. Aldh5a1-/- mice have psychomotor retardation and a progressive seizure phenotype results in death around P25. The present experiments tested the effects of a ketogenic diet in the treatment of Aldh5a1-/- mice. The KD was found to prolong the lives of Aldh5a1-/- mice by >300% while significantly delaying the onset the ataxia and preventing weight loss that is seen in untreated Aldh5a1-/- mice. Electrophysiological recordings revealed a corresponding decrease in seizures in KD fed mutants, as compared to control diet (CD) fed mutants. We assessed spontaneous miniature postsynaptic currents (mPSC) in CD and KD fed mutants. We found that CD fed mutants had significantly decreased inhibitory mPSC (mIPSC) activity compared to CD fed wildtype controls. mIPSC activity was restored in KD fed Aldh5a1-/- mice. A similar effect was found in [35S]TBPS binding experiments. TBPS binding was significantly reduced in CD fed Aldh5a1-/- mice, but restored in KD fed mutants. Plasma analysis revealed that an elevation of serum beta-hydroxybutyrate may play a role in the KD’s effects. The KD led to a significant elevation in the number of hippocampal mitochondria in mutant mice. Further, the KD was able to normalize the deficiencies in the hippocampal ATP levels seen in the Aldh5a1-/- mice. The present data suggest that the KD is able to significantly improve the Aldh5a1-/- phenotype. The effect of the KD on mIPSC activity is novel and furthers our understanding of how the KD may exert its effects. The mitochondrial studies confirm the findings of others, that the KD elevates the number of mitochondria. The KD also restores ATP deficiencies in Aldh5a1-/- mice, which is a novel finding. Together, these show that the KD may be an effective treatment for SSADH-d in humans. These data also further our understanding of the KD’s mechanisms of action.
17

The condensation of cyclohexene and succinic anhydride in the presence of aluminum chloride ...

Bernardi, Dominic Joseph, January 1941 (has links)
Thesis (Ph. D.)--University of Chicago, 1938. / Reproduced from type-written copy. "Private edition, distributed by the University of Chicago libraries, Chicago, Illinois." eContent provider-neutral record in process. Description based on print version record. Bibliographical foot-notes.
18

The condensation of cyclohexene and succinic anhydride in the presence of aluminum chloride ...

Bernardi, Dominic Joseph, January 1941 (has links)
Thesis (Ph. D.)--University of Chicago, 1938. / Reproduced from type-written copy. "Private edition, distributed by the University of Chicago libraries, Chicago, Illinois." eContent provider-neutral record in process. Description based on print version record. Bibliographical foot-notes.
19

Spectroscopic and Thermodynamic Studies of the Adsorption of Atmospherically Relevant Dicarboxylic Acids at the Vapor/Water Interface

Blower, Patrick 03 October 2013 (has links)
Many important atmospheric processes are determined by the chemical composition of aerosols, including organic material. Dicarboxylic acids are a commonly detected class of organic material in urban, rural, and remote sites across the globe. Understanding the surface behavior of these molecules is imperative in characterizing the atmospheric fate of these molecules in aerosols, especially at an aerosol surface. In fact, little is known about their orientation, solvation, or pH dependence. This dissertation explores in molecular level detail the concentration and pH behavior of low molecular weight dicarboxylic acids at the air/water interface, which is used as a model for an aerosol surface. The solvation of the carboxylic head groups is shown to be dependent upon the length of the alkyl backbone. Indeed, the solvation of the head groups changes dramatically from very weakly solvated to typical surface solvation to near bulk solvation as the backbone increases. The orientation and conformation at the surface is fully explored to explain these differences in solvation. The pH dependence of surface adsorption is characterized, and it is shown that some acids are only surface active if they are fully protonated while others may still be surface active in singly or fully deprotonated forms. Using a combination of vibrational sum frequency spectroscopy (VSFS), surface tension, and computational modeling, the behavior at the air/water interface of four of the most relevant surface-active dicarboxylic acids (malonic, succinic, glutaric, and adipic acid) is completely described. VSFS, a surface specific optical technique, provides details about the solvation, orientation, and number density at the surface while surface tension measurements provide corollary information about the surface density. The use of computational modeling aids and confirms the spectral analysis while also providing molecular level details about the surface adsorption of the acids studied. By investigating the concentration and pH dependence of these molecules, molecular level detail is obtained which enables a complete description of these acids at an air/water interface and provides pertinent surface information on these atmospherically important organic molecules. This dissertation includes both previously published and unpublished co-authored material.
20

Sustainable biodiesel biorefineries for the green succinic acid production

Vlysidis, Anestis January 2011 (has links)
There is a huge global challenge to establish alternative forms of energy in order to cope with the increasing worldwide energy demand, currently based on finite fossil fuel reserves. In the transportation sector, renewable liquid fuels, such as bio-ethanol and biodiesel which are made from biomass and are substitutes for the petroleum-derived gasoline and diesel, have received increasing interest. In spite of their recent development, the biofuel industries cannot compete with conventional liquid fuels because of their higher costs. Decisive changes are required to improve their economic sustainability, such as the establishment of novel processes that utilize their by-products for the production of value-added chemicals. In this study, the bioconversion of glycerol, which is the main by-product of the biodiesel industry, to succinic acid by using the bacterium Actinobacillus succinogenes has been investigated both experimentally and computationally. Initially, the cells were adapted to accept a glycerol rich environment by performing a series of experiments. Cells from the best experiment from each run were used as inocula for the next experiment. Batch fermentations were then performed in small scale anaerobic reactors (SARs) and in lab-scale bench top reactors (B-TRs) by using the new ‘adapted’ strain. The maximum succinic acid yield, productivity and final concentration obtained from this bioprocess were found to be 1.29 g/g, 0.27 g/L/h and 29.3 g/L, respectively. Moreover, cells have also grown successfully in both synthetic and biodiesel-derived crude glycerol, indicating that it is not necessary to remove the impurities that biodiesel-derived glycerol contains. Subsequently, an unstructured model that accounts for substrate and product inhibition was developed in order to predict the behaviour of experiments starting from different initial conditions. Model predictions were found to be in good agreement with experimental data obtained for both systems (SARs and B-TRs). Batch and fed-batch systems were optimized using the developed model to obtain high succinic acid productivity. Optimization results showed that productivity increased by 31% for batch and 79% for fed-batch systems. The corresponding optimal values were computed to be equal to 0.356 g/L/h for batch and 0.488 g/L/h for fed-batch systems. A semi-mechanistic model for the fungal fermentation on solid state rapeseed meal (i.e. the other main by-product of the biodiesel industry) was also constructed for small scale tray bioreactors. This fermentation targets to increase the nutrient factor of the rapeseed meal by decomposing its macromolecules to simple compounds which can then be used as a generic medium. The developed model effectively predicts the fungal growth, the temperature fluctuations and the moisture content inside the bed and the produced extracellular enzymes that break the complex compounds of rapeseed meal (i.e. proteins) to free amino acids. The economic sustainability of biodiesel production was investigated by the construction of a plant model of an integrated biodiesel biorefinery for the production of fuels (biodiesel) and chemicals (succinic acid) in Aspen Plus®. For a biodiesel plant with capacity of 7.8 ktons per year, it was found that the plant’s profitability can be increased by 60% (considering a 20 years plant life and an interest rate of 7%) if a fermentation and recovery process for producing succinic acid is added. The integrated biorefinery scheme demonstrated the highest profits (€ 9.95 M.) when compared with other scenarios which either purified or disposed of the glycerol. These results illustrate the critical role of glycerol when it is utilized as a key renewable building block for the production of commodity chemicals. It is clear, based on this work, that future studies targeting the sustainable development of biodiesel biorefineries should focus their investigation on novel bio-processes, like the succinic acid fermentation, supplementing the production of fuels with the co-production of platform chemicals.

Page generated in 0.0298 seconds