51 |
Synthesis and properties of polyesters based on poly(butylene succinate), a renewable polymer / Synthèse et propriétés des polyesters à base de poly (butylène succinate), un polymère renouvelablesJacquel, Nicolas 15 December 2011 (has links)
Les polymères issus de la biomasse génèrent depuis quelques années un engouement certain puisqu’ils apparaissent comme de potentiels substituts aux polymères issus de l’industrie pétrolière. Parmi ces monomères récemment développés, l’acide succinique bio-sourcé a reçu une attention particulière notamment pour des applications dans le domaine des polyesters tels que le poly(butylène succinate). La présente thèse décrit la synthèse de ce polymère par estérification directe de l’acide succinique et du 1,4-butanediol dans un réacteur pilote de 7.5 L. Les principaux paramètres du procédé tels que l’excès de diol, la température de trans-estérification ainsi que la pureté de l’acide succinique ont été étudiés. Une attention particulière a été portée sur le choix du catalyseur (son type, la quantité utilisée …) afin d’observer son influence sur le procédé ainsi que sur la stabilité du polymère final. Puis différentes stratégies de modification du poly(butylene succinate) ont été testées pour améliorer à la fois sa mise en forme par extrusion gonflage et les propriétés des films obtenus. Dans ce but l’introduction d’agents de branchements, de silices nanométriques ainsi que des comonomères rigides a été étudiée. / Polymers issued from biomass present a growing interest, since they seem to be a suitable alternative to conventional petrochemical polymers. Among the newly developed monomers, bio-based succinic acid received a particular attention for its application in the synthesis of aliphatic polyesters such as poly(butylene succinate). The present thesis reports the synthesis of this polymer via the direct esterification of succinic acid and 1,4-butanediol in a 7.5 L pilote scale reactor. Main process parameters such as the diol exces, the trans-esterification temperature as well as the purity of succinic acid have been studied. In addition a special attention was taken to highlight the influence of the catalyst (its type, quantity ...) on the synthesis and on the stability of the resulting polymer. Then several strategies of modification of poly(butylene succinate) have been studied to improve the processability of the polymer via film extrusion blowing and to enhance the properties of polymer films. To that end the introduction of branching agents, silica nanofillers as well as rigid comonomers have been studied.
|
52 |
Méthodologie générale pour la conception d'une extraction liquide-liquide réactive : application à la séparation d'un acide carboxylique issu d'un milieu fermentaire / General design methodology for reactive liquid-liquid extraction : application to carboxylic acid recovery in fermentation brothMizzi, Benoît 07 November 2016 (has links)
Le couplage fonctionnel des opérations de séparation et de réaction ainsi que les bio-procédés sont deux axes de recherche largement explorés. Cependant, l’industrie du génie des procédés a du mal à se tourner vers des technologies de ce type car il demeure un réel manque de connaissances et d’outils de conception pour ce genre de procédés. Une méthodologie de conception générale pour l'extraction liquide-liquide réactive est introduite dans cette étude. Elle est composée de trois étapes différentes: l'analyse de faisabilité, la synthèse ou dimensionnement du procédé et la validation par simulation. Cette méthodologie conduit à des paramètres structuraux et opératoires de la colonne étudiée à partir seulement des informations concernant le comportement physico-chimique du système étudié, en exploitant les équations d’équilibre chimique et entre phase ainsi que les bilans matières. Les résultats de cette méthode sont un bon point de départ pour une étude d'optimisation ou d'un processus de calcul d'investissement. Cette méthodologie a été appliquée à différentes études de cas: regroupant deux stratégies différentes d'extraction avec plusieurs solvants pour récupérer l'acide succinique dans un milieu de fermentation / The functional coupling of separation and reaction operations and bioprocesses are two widely explored areas of research. However, process engineering industry is struggling to turn to these technologies because it remains a real lack of knowledge and design tools for this kind of processes. A general design methodology for reactive liquid-liquid extraction is introduced in this study. It is composed of three different steps: feasibility analysis, pre-design determination and simulation validation. This methodology leads to the design specifications of the units from the information concerning the physicochemical behaviour of the studied system, exploiting the equilibrium and material balance equations. The results of this methodology are a good starting point for an optimization study or for an investment calculation process. This methodology has been applied to different case studies: two different strategies of extraction and several solvents to recover succinic acid in fermentation broth.
|
53 |
Low Noise Amplifiers using highly strained InGaAs/InAlAs/InP pHEMT for implementation in the Square Kilometre Array (SKA)Mohamad Isa, Muammar Bin January 2012 (has links)
The Square Kilometre Array (SKA) is a multibillion and a multinational science project to build the world’s largest and most sensitive radio telescope. For a very large field of view, the combined collecting area would be one square kilometre (or 1, 000, 000 square metre) and spread over more than 3,000 km wide which will require a massive count of antennas (thousands). Each of the antennas contains hundreds of low noise amplifier (LNA) circuits. The antenna arrays are divided into low, medium and high operational frequencies and located at different positions to boost up the telescope’s scanning sensitivity.The objective of this work was to develop and fabricate fully on-chip LNA circuits to meet the stringent requirements for the mid-frequency array from 0.4 GHz to 1.4 GHz of the SKA radio astronomy telescope using Monolithic Microwave Integrated Circuit technology (MMIC). Due to the number of LNA reaching figures of millions, the fabricated circuits were designed with the consideration for low cost fabrication and high reliability in the receiver chain. Therefore, a relaxed optical lithography with Lg = 1 µm was adopted for a high yield fabrication process.Towards the fulfilment of the device’s low noise characteristics, a large number of device designs, fabrication and characterisation of InGaAs/InAlAs/InP pHEMTs were undertaken. These include optimisations at each critical fabrication steps. The device’s high breakdown and very low gate leakage characteristics were further improved by a combination of judicious epitaxial growth and manipulation of materials’ energy gaps. An attempt to increase the device breakdown voltage was also employed by incorporating Field Plate structure at the gate terminal. This yielded the devices with improvements in the breakdown voltage up to 15 V and very low gate leakage of 1 µA/mm, in addition to high transconductance (gm) characteristic. Fully integrated double stage LNA had measured NF varying from 1.2 dB to 1.6 dB from 0.4 GHz to 1.4 GHz, compared with a slightly lower NF obtained from simulation (0.8 dB to 1.1 dB) across the same frequency band.These are amongst the attractive device properties for the implementation of a fully on-chip MMIC LNA circuits demonstrated in this work. The lower circuit’s low noise characteristic has been demonstrated using large gate width geometry pHEMTs, where the system’s noise resistance (Rn) has successfully reduced to a few ohms. The work reported here should facilitate the successful implementation of rugged low noise amplifiers as required by SKA receivers.
|
54 |
Systematic identification of thermal degradation products of HPMCP during hot melt extrusion processKarandikar, Hrushikesh M., Ambardekar, Rohan, Kelly, Adrian L., Gough, Tim, Paradkar, Anant R January 2015 (has links)
No / A systematic identification of the degradation products of hydroxypropyl methylcellulose phthalate (HPMCP) during hot melt extrusion (HME) has been performed. A reverse phase HPLC method was developed for the extrudates of both hydroxypropyl methylcellulose acetate succinate (HPMCAS) and HPMCP polymers to quantify their thermal hydrolytic products: acetic acid (AA), succinic acid (SA) for HPMCAS and phthalic acid (PA) for HPMCP, without hydrolysing the polymers in strong alkaline solutions. The polymers were extruded in the temperature range of 160-190 degrees C at different screw rotation speeds and hydrolytic impurities were analysed. Investigation of extruded HPMCP showed an additional thermal degradation product, who is structural elucidation revealed to be phthalic anhydride (PAH). Moreover, two environmental analytical impurities, dimethyl phthalate and methyl benzoate formed in situ were recorded on GC-MS and their origin was found to be associated with PAH derivatization. Using the experimental data gathered during this study, a degradation mechanism for HPMCP is proposed.
|
55 |
Estudio espectroelectroquímico de los equilibrios ácido-base de especies adsorbidas sobre electrodos metálicos con superficies monocristalinas bien definidasBerná Galiano, Antonio 22 December 2014 (has links)
No description available.
|
56 |
Síntese de ácidos 3-alcóxi-3-cianopropanóicos, ácidos 2-ciano tetraidrofuran(2h-piran)-3-óicos e sua aplicação na obtenção dos respectivos ácidos succinâmicos e succínicos / Synthesis of 3-alkoxy-3-cyanopropanoic acids, 2-cyano tetrahydrofuran(2h-pyran)-3-carboxylic acids and their application to the synthesis of the respective succinamic acids and succinic acidsSilva, Fabio Machado da 23 February 2007 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / This work presents the synthesis of a series of 3-alkoxy-3-cyanopropanoic acids and 2-cyanotetrahydrofuran(2H-pyran)-3-carboxylic acids of general formula HO2CCH(R2)CR1(OR)CN, where R/R2= Et/H, Et/Me, -(CH2)2-, -(CH2)3-, iso-Pr/H, sec-
Bu/H, iso-Pr/Me, sec-Bu/Me and R1= H, obtained through the reaction of β-alkoxyvinyl trichloromethyl ketones [Cl3CCOC(R2)=CR1(OR)] with sodium cyanide. The methodology used in the synthesis provided high selectivity to the reaction, being observed only the formation of the expected products, through a conjugated addition the cyanide to the β-carbon of the enones and substitution of the CCl3 group by the hydroxyl ion originated from the basic medium used in the reaction. The β-alkoxyvinyl trichloromethyl ketones where R/R2= Et/H, R1= OEt and R/R2= Et/Br, R1=H, when submitted the same reaction conditions, furnished the succinimide 3,3-diethoxypyrrolidine-2,5-dione and the maleimide 3-ethoxy-1H-pyrrole-2,5-dione, respectively. In a second reaction, the synthesized 3-alkoxy-3-cyanopropanoic acids and 2- cyanotetrahydrofuran(2H-pyran)-3-carboxylic acids were used to obtain succinamic acids and succinic acids of general formula HO2CCH(R2)CR1(OR)CONH2 and HO2CCH(R2)CR1(OR)CO2H, respectively. The succinamic acids were formed by the spontaneous conversion of the cyano group to amide (partial hydrolysis) and the succinic acids were obtained by the total hydrolysis of the cyano group to carboxylic acid, under reflux and acid medium. / Este trabalho apresenta a síntese de uma série de ácidos 3-alcóxi-3-cianopropanóicos e 2-cianotetraidrofuran(2H-piran)-3-óicos de fórmula geral HO2CCH(R2)CR1(OR)CN, onde R/R2= Et/H, Et/Me, -(CH2)2-, -(CH2)3-, iso-Pr/H, sec-Bu/H, iso-Pr/Me, sec-Bu/Me e R1= H, obtidos através da reação de β-alcoxivinil triclorometil cetonas [Cl3CCOC(R2)=CR1(OR)] com cianeto de sódio. A metodologia empregada na síntese proporcionou alta seletividade à reação, sendo observada
somente a formação do produto esperado, via adição conjugada de cianeto no carbono-β das enonas e substituição do grupo CCl3 pelo íon hidróxido proveniente
do meio básico utilizado na reação. As β-alcoxivinil triclorometil cetonas, onde R/R2=Et/H, R1= OEt e R/R2= Et/Br, R1= H, quando submetidas as mesmas condições de
reação, produziram a succinimida 3,3-dietoxipirrolidino-2,5-diona e a maleimida 3-etóxi-1H-pirrol-2,5-diona, respectivamente. Em um segundo momento, os ácidos 3-alcóxi-3-cianopropanóicos e 2-cianotetraidrofuran(2H-piran)-3-óicos sintetizados foram empregados na obtenção
de ácidos succinâmicos e de ácidos succínicos, representados estruturalmente por HO2CCH(R2)CR1(OR)CONH2 e HO2CCH(R2)CR1(OR)CO2H, respectivamente. Os ácidos succinâmicos formaram-se pela conversão espontânea do grupo ciano para
amida (hidrólise parcial) e os ácidos succínicos foram obtidos por reação de hidrólise total do grupo ciano para ácido carboxílico, sob refluxo e meio ácido.
|
57 |
Étude de l’influence de l’aération sur la mise en œuvre d’un procédé de production d’acide succinique par Corynebacterium glutamicum 2262 / Study of aeration influence on the design of succinic acid production process using Corynebacterium glutamicum 2262Kaboré, Abdoul Karim 02 April 2015 (has links)
L'acide succinique est une molécule linéaire, bi-fonctionnelle qui possède de nombreuses applications alimentaires, chimiques et pharmaceutiques etc. Les connaissances de la régulation des voies métaboliques d’organismes d’intérêt industriel, le génie génétique et le génie des procédés ont permis à des microorganismes recombinants (C. glutamicum) de produire jusqu'à 100 g.L-1 de succinate avec des rendements intéressants. C. glutamicum est largement connu comme l'un des meilleurs producteurs industriels de nombreux acides aminés (glutamate, lysine etc.). Cependant, des études de C. glutamicum ont démontré sa capacité à produire plusieurs acides organiques (succinate, lactate, acétate, etc.). Au cours de ce travail, nous avons supprimé le gène ldhA de C. glutamicum en utilisant le plasmide pk19mobsacBΔldhA. Nous avons démontré que la délétion de ce gène n’avait pas d’incidence sur la capacité de croissance de la bactérie. Par ailleurs, nous avons étudié les effets de l’oxygénation sur la réponse physiologique de C. glutamicum 2262ΔldhA à travers des expériences de cultures en fioles en verre lisses en imposant différentes conditions de kLa. Les résultats ont montré que des faibles kLa (<33 h-1) favorisaient la production d’acides organiques tandis que les kLa élevés amélioraient surtout l’accumulation de la biomasse. Nous avons également mis en œuvre un procédé de production très efficace avec une phase de transition aérobiose-anaérobiose basée sur la régulation de la concentration en oxygène dissous. Avec ce procédé, 327 mM de succinate avec un rendement de 0,94 mole par mole de glucose ont pu être produits avec le mutant ΔldhA. En outre, nous avons vérifié l’efficacité de ce nouveau procédé en l’appliquant à la souche sauvage qui normalement produit 10 fois plus de lactate que de succinate. Ces résultats ont montré une production de 793 mM (94 g.L-1) de succinate et 785 mM (71 g.L-1) de lactate. Ils soulignent ainsi, l'importance de la phase de transition aérobiose-anaérobiose lors des procédés de production de succinate par des bactéries aérobie facultatif. Enfin, des expériences en système bi-étagé ont montré que C. glutamicum 2262 pouvait s’adapter très facilement aux gradients et hétérogénéités en oxygène dissous dans les cultures à grande échelle / Succinic acid is a linear and bi-functional molecule that has several practical applications including food, chemical and pharmaceutical industries. Thanks to increased knowledge on metabolism and pathway regulation of industrially relevant organisms, to the development of performant genetic tools and process engineering, recombinants strains (Escherichia coli, Corynebacterium glutamicum etc.) have been reported to be able to produce up to 100 g.L-1 with interesting yields (> 1.5 mole per mole glucose). C. glutamicum is well known as one of the best industrial producers of numerous amino acids (glutamate, lysine etc.). However, recent studies of C. glutamicum revealed its capability to produce several organic acids (succinate, lactate, acetate, etc.). In this work, we have deleted the ldhA gene of C. glutamicum by using a plasmid vector pk19mobsacBΔldhA. We demonstrated that the mutant and the wild type presented similar growth kinetics with maximal growth rate of about 0.7 h-1. We studied also the effects of oxygenation on C. glutamicum 2262 ΔldhA through cultures at different kLa and it appeared that lower kLa (<33 h-1) favored organic acids production wile higher favored bacterial growth. Furthermore, we designed a tri-phasic process with transition phase by regulation of dissolved oxygen concentration which resulted in the production of 327 mM of succinic acid with a yield of 0.94 mole per mole glucose. The application of the designed process to C. glutamicum 2262 wild type that normally produces lactate with a lactate to succinate production ratio up to 13.3 mol.mol-1, resulted in succinate concentration up to 793 mM (94 g.L-1) and 785 mM (71 g.L-1) of lactate. The succinate production yield was 1.1 mole per mole glucose and acetate production was negligible. These results underlined the importance of aerobic to anaerobic transition in succinate production processes of facultative aerobes and the necessity to engineer not only the microorganism but also the process. Finally, scale-down study have demonstrated the robustness of C. glutamicum against the oxygen gradients in bioreactor
|
58 |
Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA) / Physikochemische Prozesse während der Reaktivleimung mit Alkenyl-Bernsteinsäure-Anhydrid (ASA)Porkert, Sebastian 27 February 2017 (has links) (PDF)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure.
The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors.
This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry.
The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.
|
59 |
Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA)Porkert, Sebastian 09 December 2016 (has links)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure.
The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors.
This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry.
The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.:Acknowledgment I
Abstract III
Table of Content V
List of Illustrations XI
List of Tables XVI
List of Formulas XVII
List of Abbreviations XVIII
1 Introduction and Problem Description 1
1.1 Initial Situation 1
1.2 Objective 2
2 Theoretical Approach 3
2.1 The Modern Paper & Board Industry on the Example of Germany 3
2.1.1 Raw Materials for the Production of Paper & Board 5
2.2 The Sizing of Paper & Board 8
2.2.1 Introduction to Paper & Board Sizing 8
2.2.2 The Definition of Paper & Board Sizing 10
2.2.3 The Global Markets for Sized Paper & Board Products and Sizing Agents 11
2.2.4 Physical and Chemical Background to the Mechanisms of Surface-Wetting and Penetration 13
2.2.4.1 Surface Wetting 14
2.2.4.2 Liquid Penetration 15
2.2.5 Surface and Internal Sizing 17
2.2.6 Sizing Agents 18
2.2.6.1 Alkenyl Succinic Anhydride (ASA) 19
2.2.6.2 Rosin Sizes 19
2.2.6.3 Alkylketen Dimer (AKD) 23
2.2.6.4 Polymeric Sizing Agents (PSA) 26
2.2.7 Determination of the Sizing Degree (Performance Analysis) 28
2.2.7.1 Cobb Water Absorption 29
2.2.7.2 Contact Angle Measurement 30
2.2.7.3 Penetration Dynamics Analysis 31
2.2.7.4 Further Qualitative Analysis Methods 33
2.2.7.4.1 Ink Stroke 33
2.2.7.4.2 Immersion Test 33
2.2.7.4.3 Floating Test 34
2.2.7.4.4 Hercules Sizing Tester (HST) 34
2.2.8 Sizing Agent Detection (Qualitative Analysis) and Determination of the Sizing Agent Content (Quantitative Analysis) 35
2.2.8.1 Destructive Methods 35
2.2.8.2 Non Destructive Methods 36
2.3 Alkenyl Succinic Anhydride (ASA) 36
2.3.1.1 Chemical Composition and Production of ASA 37
2.3.1.2 Mechanistic Reaction Models 39
2.3.1.3 ASA Application 42
2.3.1.3.1 Emulsification 42
2.3.1.3.2 Dosing 44
2.3.1.4 Mechanistic Steps of ASA Sizing 46
2.3.2 Physico-Chemical Aspects during ASA Sizing 48
2.3.2.1 Reaction Plausibility 48
2.3.2.1.1 Educt-Product Balance / Kinetics 48
2.3.2.1.2 Energetics 51
2.3.2.1.3 Sterics 52
2.3.2.2 Phenomena based on Sizing Agent Mobility 53
2.3.2.2.1 Sizing Agent Orientation 54
2.3.2.2.2 Intra-Molecular Orientation 55
2.3.2.2.3 Sizing Agent Agglomeration 55
2.3.2.2.4 Fugitive Sizing / Sizing Loss / Size Reversion 56
2.3.2.2.5 Sizing Agent Migration 58
2.3.2.2.6 Sizing Reactivation / Sizing Agent Reorientation 59
2.3.3 Causes for Interactions during ASA Sizing 60
2.3.3.1 Process Parameters 61
2.3.3.1.1 Temperature 61
2.3.3.1.2 pH-Value 62
2.3.3.1.3 Water Hardness 63
2.3.3.2 Fiber Types 64
2.3.3.3 Filler Types 65
2.3.3.4 Cationic Additives 66
2.3.3.5 Anionic Additives 67
2.3.3.6 Surface-Active Additives 68
2.4 Limitations of State-of-the-Art ASA-Sizing Analysis 69
2.5 Optical ASA Localization 71
2.5.1 General Background 71
2.5.2 Confocal Microscopy 72
2.5.2.1 Principle 72
2.5.2.2 Features, Advantage and Applicability for Paper-Component Analysis 74
2.5.3 Dying / Staining 75
3 Discussion of Results 77
3.1 Localization of ASA within the Sheet Structure 77
3.1.1 Choice of Dyes 77
3.1.1.1 Dye Type 78
3.1.1.2 Evaluation of Dye/ASA Mixtures 80
3.1.1.2.1 Maximum Soluble Dye Concentration 80
3.1.1.2.2 Thin Layer Chromatography 81
3.1.1.2.3 FTIR-Spectroscopy 82
3.1.1.3 Evaluation of the D-ASA Emulsion 84
3.1.1.4 Paper Chromatography with D-ASA & F-ASA Emulsions 85
3.1.1.5 Evaluation of the D-ASA Emulsion’s Sizing Efficiency 86
3.1.2 The Localization Method 87
3.1.2.1 The Correlation between ASA Distribution and Agglomeration 88
3.1.2.2 Measurement Settings 89
3.1.2.3 Manual Analysis 90
3.1.2.4 Automated Analysis 92
3.1.2.4.1 Automated Localization / Microscopy Measurement 92
3.1.2.4.2 Automated Analysis / Image-Processing 93
3.1.2.5 Result Interpretation and Example Results 96
3.1.2.6 Reproducibility 97
3.1.2.7 Sample Mapping 98
3.1.3 Approaches to Localization-Method Validation 102
3.1.3.1 Raman Spectroscopy 102
3.1.3.2 Confocal Laser Scanning Fluorescent Microscopy 102
3.1.3.3 Decolorization 103
3.2 Factors Impacting the Sizing Behavior of ASA 104
3.2.1 ASA Type 105
3.2.2 Emulsion Parameters 107
3.2.2.1 Hydrolyzed ASA Content 107
3.2.2.2 ASA/Starch Ratio 109
3.2.2.3 Emulsion Age 110
3.2.3 Stock Parameters 111
3.2.3.1 Long Fiber/Short Fiber Ratio 111
3.2.3.2 Furnish Type 112
3.2.3.3 Degree of Refining 114
3.2.3.4 Filler Type/Content 116
3.2.4 Process Parameters 119
3.2.4.1 Temperature 119
3.2.4.2 pH-Value 120
3.2.4.3 Conductivity 122
3.2.4.4 Water Hardness 123
3.2.4.5 Shear Rate 125
3.2.4.6 Dwell Time 127
3.2.4.7 Dosing Position & Dosing Order 128
3.2.4.8 Drying 130
3.2.4.9 Aging 131
3.3 Factors Impacting the Localization Behavior of ASA 132
3.3.1 Degree of Refining 132
3.3.2 Sheet Forming Conductivity 135
3.3.3 Water Hardness 136
3.3.4 Retention Aid (PAM) 137
3.3.5 Contact Curing 138
3.3.6 Accelerated Aging 139
3.4 Main Optimization Approach 141
3.4.1 Optimization of ASA Sizing Performance Characteristics 142
3.4.2 Emulsion Modification 144
3.4.2.1 Lab Trials / RDA Sheet Forming 146
3.4.2.2 TPM Trials 147
3.4.2.3 Industrial-Scale Trials 149
3.4.2.4 Correlation between Sizing Performance Optimization and Agglomeration Behavior on the Example of PAAE 152
3.5 Holistic Approach to Sizing Performance Explanation 154
4 Experimental Approach 157
4.1 Characterization of Methods, Measurements and Chemicals used for the Optical Localization-Analysis of ASA 157
4.1.1 Characterization of used Chemicals 157
4.1.1.1 Preparation of Dyed-ASA Solutions 157
4.1.1.2 Thin Layer Chromatography 157
4.1.1.3 Fourier Transformed Infrared Spectroscopy 157
4.1.1.4 Emulsification of ASA 158
4.1.1.5 Paper Chromatography 159
4.1.1.6 Particle Size Measurement 159
4.1.2 Optical Analysis of ASA Agglomerates 160
4.1.2.1 Microscopy 160
4.1.2.2 Automated Analysis 163
4.1.2.2.1 Adobe Photoshop 163
4.1.2.2.2 Adobe Illustrator 164
4.1.2.3 Confocal Laser Scanning Fluorescent Microscopy 166
4.2 Characterization of Used Standard Methods and Measurements 166
4.2.1 Stock and Paper Properties 166
4.2.1.1 Stock pH, Conductivity and Temperature Measurement 166
4.2.1.2 Dry Content / Consistency Measurement 167
4.2.1.3 Drainability (Schopper-Riegler) Measurement 167
4.2.1.4 Base Weight Measurement 168
4.2.1.5 Ultrasonic Penetration Measurement 168
4.2.1.6 Contact Angle Measurement 169
4.2.1.1 Cobb Measurement 169
4.2.1.2 Air Permeability Measurements 170
4.2.1.3 Tensile Strength Measurements 170
4.2.2 Preparation of Sample Sheets 171
4.2.2.1 Stock Preparation 171
4.2.2.2 Laboratory Refining (Valley Beater) 171
4.2.2.3 RDA Sheet Forming 171
4.2.2.4 Additive Dosing 173
4.2.2.5 Contact Curing 174
4.2.2.6 Hot Air Curing 174
4.2.2.7 Sample Aging 174
4.2.2.8 Preparation of Hydrolyzed ASA 175
4.2.2.9 Trial Paper Machine 175
4.2.2.10 Industrial-Scale Board Machine 177
4.3 Characterization of used Materials 178
4.3.1 Fibers 178
4.3.1.1 Reference Stock System 178
4.3.1.2 OCC Fibers 179
4.3.1.3 DIP Fibers 179
4.3.2 Fillers 180
4.3.3 Chemical Additives 180
4.3.3.1 ASA 180
4.3.3.2 Starches 181
4.3.3.3 Retention Aids 181
4.3.3.4 Poly Aluminum Compounds 181
4.3.3.5 Wet Strength Resin 181
4.3.4 Characterization of used Additives 182
4.3.4.1 Solids Content 182
4.4 Description of Implemented Advanced Data Analysis- and Visualization Methods 183
4.4.1 Design of Experiments (DOE183
4.4.2 Contour Plots 184
4.4.3 Box-Whisker Graphs 185
5 Conclusion 186
6 Outlook for Further Work 191
7 Bibliography 192
Appendix 207
7.1 Localization Method Reproducibility 207
7.2 DOE - Coefficient Lists 208
7.2.1 Trial 3.3.4 – Impact of Retention Aid (PAM) on Agglomeration Behavior and Sizing Performance 208
7.2.2 Trial 3.3.5 – Impact of Contact Curing on Agglomeration Behavior and Sizing Performance 208
7.2.3 Trial 3.3.6 – Impact of Accelerated Aging on Agglomeration Behavior and Sizing Performance 209
|
Page generated in 0.055 seconds