• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamental investigations on the barrier effect of polyester micro fiber fabrics towards particle-loaded liquids induced by surface hydrophobization

Islam, Md. Nazirul 06 November 2004 (has links) (PDF)
As the title implies, the chief goal of the present work is the improvement of the barrier effects of textile fabrics in the medical sector, in particular, in the operating room, which would be an effective safeguard against the causative pathogens allowing the health workers to work in and around hostile atmospheres and to accomplish useful tasks. To overcome the inherent drawbacks of surgical gown from classical fibers of both natural and synthetic origins, polyester micro filament fabric, down to 0.62 dtex per filament, was used to substitute them. Two major pathways have been chosen to render the surface hydrophobic: - Wet-chemical treatment - Plasma modification For the maximum efficiency of a specific wet-chemical, the following application formulations were found to be best effective: pH =4-5 Drying temperature and time=100°C / 90s Pick-up = 80% Curing temperature and time= 160°C / 120s A range of physical and chemical parameters have been found exerting significant influence on the extent of modification of the material: - Wetting agent - Amount of fluorine content in the chemical - Subsequent heat treatment of the finished material after washing - Ironing of the fabric For the plasma enhanced surface fluorination the following plasma gases were used: - Saturated fluorine compounds: CF4 and C2F6 - Reducing agent: H2 and C2H4 The exposure of the substrate to a pure C2F6 discharge resulted in higher hydrophobicity than the substrates exposed to CF4 plasma. Stepwise increased mixture of H2 or C2H4 to a proportionally decreased amount of C2F6 plasma showed a gradual decrease in contact angle and a substantial increase in sliding angle values. In addition to the treatments with gas mixtures a two-step technique, i.e., treatment with C2H4 prior to C2F6 plasma, was applied that appeared to be very promising in modifying the surface characteristics. Both, the contact angles and the sliding angles remaining almost constant on a very high level with increasing amount of C2H4 in the feed composition. An essentially vital concern of the work was the characterization of the treatment effect comprising both physical and chemical aspects. By washing the materials for 20 times no significant impairment of hydrophobic character has been noticed in case of fluorocarbon finishing agents as well as by the surface treated with C2H4 followed by C2F6 plasma (i.e., a two-step technique), wherein a complete loss of hydrophobic effect washing the silicone-treated materials for 10 times was observed. In breathability aspect, the plasma modification was found to be the best-suited technique with zero reduction of air permeability in comparison to wet-chemical finishing. The barrier test as a measure of dye absorption was conducted using protein solution, synthetic and human blood and the efficiency were verified by colorimetric technique. In contrast to pure plasma treatments, modification of the fabric with plasma in two-step treatment as well as with wet-finishing method using fluorocarbon compounds were completely impervious to artificial and real blood. The most striking feature was the zero uptake of the protein solution by all treated surfaces.
2

Fundamental investigations on the barrier effect of polyester micro fiber fabrics towards particle-loaded liquids induced by surface hydrophobization

Islam, Md. Nazirul 30 November 2004 (has links)
As the title implies, the chief goal of the present work is the improvement of the barrier effects of textile fabrics in the medical sector, in particular, in the operating room, which would be an effective safeguard against the causative pathogens allowing the health workers to work in and around hostile atmospheres and to accomplish useful tasks. To overcome the inherent drawbacks of surgical gown from classical fibers of both natural and synthetic origins, polyester micro filament fabric, down to 0.62 dtex per filament, was used to substitute them. Two major pathways have been chosen to render the surface hydrophobic: - Wet-chemical treatment - Plasma modification For the maximum efficiency of a specific wet-chemical, the following application formulations were found to be best effective: pH =4-5 Drying temperature and time=100°C / 90s Pick-up = 80% Curing temperature and time= 160°C / 120s A range of physical and chemical parameters have been found exerting significant influence on the extent of modification of the material: - Wetting agent - Amount of fluorine content in the chemical - Subsequent heat treatment of the finished material after washing - Ironing of the fabric For the plasma enhanced surface fluorination the following plasma gases were used: - Saturated fluorine compounds: CF4 and C2F6 - Reducing agent: H2 and C2H4 The exposure of the substrate to a pure C2F6 discharge resulted in higher hydrophobicity than the substrates exposed to CF4 plasma. Stepwise increased mixture of H2 or C2H4 to a proportionally decreased amount of C2F6 plasma showed a gradual decrease in contact angle and a substantial increase in sliding angle values. In addition to the treatments with gas mixtures a two-step technique, i.e., treatment with C2H4 prior to C2F6 plasma, was applied that appeared to be very promising in modifying the surface characteristics. Both, the contact angles and the sliding angles remaining almost constant on a very high level with increasing amount of C2H4 in the feed composition. An essentially vital concern of the work was the characterization of the treatment effect comprising both physical and chemical aspects. By washing the materials for 20 times no significant impairment of hydrophobic character has been noticed in case of fluorocarbon finishing agents as well as by the surface treated with C2H4 followed by C2F6 plasma (i.e., a two-step technique), wherein a complete loss of hydrophobic effect washing the silicone-treated materials for 10 times was observed. In breathability aspect, the plasma modification was found to be the best-suited technique with zero reduction of air permeability in comparison to wet-chemical finishing. The barrier test as a measure of dye absorption was conducted using protein solution, synthetic and human blood and the efficiency were verified by colorimetric technique. In contrast to pure plasma treatments, modification of the fabric with plasma in two-step treatment as well as with wet-finishing method using fluorocarbon compounds were completely impervious to artificial and real blood. The most striking feature was the zero uptake of the protein solution by all treated surfaces.
3

Oberflächenmodifizierung von Metallen und Metalloxiden mit wasserlöslichen Polymeren und Charakterisierung der Adsorbate mit solvatochromen Sondenmolekülen

Seifert, Susan 05 July 2011 (has links) (PDF)
Gegenstand der vorliegenden Arbeit ist die Oberflächenmodifizierung von drei industriell bedeutenden Metallen, Eisen, Zink und Kupfer, sowie den Oxiden von Zink und Eisen, mit wasserlöslichen Polyvinyl-formamid-Polyvinylamin-Copolymeren (PVFA-co-PVAmen). Der Einfluss des pH-Wertes, des Hydrolysegrades der PVFA-co-PVAme, und der Einfluss von im wässrigen Medium ablaufenden Redoxprozessen an den Metalloberflächen auf die adsorbierte Polymermenge, wurden studiert. Ferner werden polymeranaloge Reaktionen des PVAms bzw. PVAm-modifizierter Metall- und Metalloxidpulver mit Kohlendioxid, ein Multischichtaufbau mit PVAm und Natriumpolyacrylat, als auch die Hydrophobierung durch Maleinsäureanhydridcopolymere beschrieben. Zur Charakterisierung der polymermodifizierten Oberflächen wurde die XPS, die DRIFT-Spektroskopie und die Sorptiochromie genutzt. Besonders der Sorptiochromie wurde aufgrund der hohen Sensitivität ein hoher Stellenwert in der vorliegenden Arbeit eingeräumt. Das Konzept der Sorptiochromie wurde zum ersten Mal auf Metalloberflächen angewendet. Ein zweiter zentraler Aspekt der Arbeit war deshalb die Suche nach Sondenmolekülen, die geeignet waren Polaritätsparameter farbiger Metalloxid- und Metallpulver zu ermitteln. Hierfür wurden das solvatochrome und acidochrome Verhalten, sowie die Wechselwirkungen von Barbituratfarbstoffen mit Merocyaninstruktur mit Metallionen, Metall- und Metalloxidoberflächen studiert.
4

Oberflächenmodifizierung von Metallen und Metalloxiden mit wasserlöslichen Polymeren und Charakterisierung der Adsorbate mit solvatochromen Sondenmolekülen

Seifert, Susan 07 June 2011 (has links)
Gegenstand der vorliegenden Arbeit ist die Oberflächenmodifizierung von drei industriell bedeutenden Metallen, Eisen, Zink und Kupfer, sowie den Oxiden von Zink und Eisen, mit wasserlöslichen Polyvinyl-formamid-Polyvinylamin-Copolymeren (PVFA-co-PVAmen). Der Einfluss des pH-Wertes, des Hydrolysegrades der PVFA-co-PVAme, und der Einfluss von im wässrigen Medium ablaufenden Redoxprozessen an den Metalloberflächen auf die adsorbierte Polymermenge, wurden studiert. Ferner werden polymeranaloge Reaktionen des PVAms bzw. PVAm-modifizierter Metall- und Metalloxidpulver mit Kohlendioxid, ein Multischichtaufbau mit PVAm und Natriumpolyacrylat, als auch die Hydrophobierung durch Maleinsäureanhydridcopolymere beschrieben. Zur Charakterisierung der polymermodifizierten Oberflächen wurde die XPS, die DRIFT-Spektroskopie und die Sorptiochromie genutzt. Besonders der Sorptiochromie wurde aufgrund der hohen Sensitivität ein hoher Stellenwert in der vorliegenden Arbeit eingeräumt. Das Konzept der Sorptiochromie wurde zum ersten Mal auf Metalloberflächen angewendet. Ein zweiter zentraler Aspekt der Arbeit war deshalb die Suche nach Sondenmolekülen, die geeignet waren Polaritätsparameter farbiger Metalloxid- und Metallpulver zu ermitteln. Hierfür wurden das solvatochrome und acidochrome Verhalten, sowie die Wechselwirkungen von Barbituratfarbstoffen mit Merocyaninstruktur mit Metallionen, Metall- und Metalloxidoberflächen studiert.
5

Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA) / Physikochemische Prozesse während der Reaktivleimung mit Alkenyl-Bernsteinsäure-Anhydrid (ASA)

Porkert, Sebastian 27 February 2017 (has links) (PDF)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure. The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors. This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry. The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.
6

Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA)

Porkert, Sebastian 09 December 2016 (has links)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure. The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors. This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry. The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.:Acknowledgment I Abstract III Table of Content V List of Illustrations XI List of Tables XVI List of Formulas XVII List of Abbreviations XVIII 1 Introduction and Problem Description 1 1.1 Initial Situation 1 1.2 Objective 2 2 Theoretical Approach 3 2.1 The Modern Paper & Board Industry on the Example of Germany 3 2.1.1 Raw Materials for the Production of Paper & Board 5 2.2 The Sizing of Paper & Board 8 2.2.1 Introduction to Paper & Board Sizing 8 2.2.2 The Definition of Paper & Board Sizing 10 2.2.3 The Global Markets for Sized Paper & Board Products and Sizing Agents 11 2.2.4 Physical and Chemical Background to the Mechanisms of Surface-Wetting and Penetration 13 2.2.4.1 Surface Wetting 14 2.2.4.2 Liquid Penetration 15 2.2.5 Surface and Internal Sizing 17 2.2.6 Sizing Agents 18 2.2.6.1 Alkenyl Succinic Anhydride (ASA) 19 2.2.6.2 Rosin Sizes 19 2.2.6.3 Alkylketen Dimer (AKD) 23 2.2.6.4 Polymeric Sizing Agents (PSA) 26 2.2.7 Determination of the Sizing Degree (Performance Analysis) 28 2.2.7.1 Cobb Water Absorption 29 2.2.7.2 Contact Angle Measurement 30 2.2.7.3 Penetration Dynamics Analysis 31 2.2.7.4 Further Qualitative Analysis Methods 33 2.2.7.4.1 Ink Stroke 33 2.2.7.4.2 Immersion Test 33 2.2.7.4.3 Floating Test 34 2.2.7.4.4 Hercules Sizing Tester (HST) 34 2.2.8 Sizing Agent Detection (Qualitative Analysis) and Determination of the Sizing Agent Content (Quantitative Analysis) 35 2.2.8.1 Destructive Methods 35 2.2.8.2 Non Destructive Methods 36 2.3 Alkenyl Succinic Anhydride (ASA) 36 2.3.1.1 Chemical Composition and Production of ASA 37 2.3.1.2 Mechanistic Reaction Models 39 2.3.1.3 ASA Application 42 2.3.1.3.1 Emulsification 42 2.3.1.3.2 Dosing 44 2.3.1.4 Mechanistic Steps of ASA Sizing 46 2.3.2 Physico-Chemical Aspects during ASA Sizing 48 2.3.2.1 Reaction Plausibility 48 2.3.2.1.1 Educt-Product Balance / Kinetics 48 2.3.2.1.2 Energetics 51 2.3.2.1.3 Sterics 52 2.3.2.2 Phenomena based on Sizing Agent Mobility 53 2.3.2.2.1 Sizing Agent Orientation 54 2.3.2.2.2 Intra-Molecular Orientation 55 2.3.2.2.3 Sizing Agent Agglomeration 55 2.3.2.2.4 Fugitive Sizing / Sizing Loss / Size Reversion 56 2.3.2.2.5 Sizing Agent Migration 58 2.3.2.2.6 Sizing Reactivation / Sizing Agent Reorientation 59 2.3.3 Causes for Interactions during ASA Sizing 60 2.3.3.1 Process Parameters 61 2.3.3.1.1 Temperature 61 2.3.3.1.2 pH-Value 62 2.3.3.1.3 Water Hardness 63 2.3.3.2 Fiber Types 64 2.3.3.3 Filler Types 65 2.3.3.4 Cationic Additives 66 2.3.3.5 Anionic Additives 67 2.3.3.6 Surface-Active Additives 68 2.4 Limitations of State-of-the-Art ASA-Sizing Analysis 69 2.5 Optical ASA Localization 71 2.5.1 General Background 71 2.5.2 Confocal Microscopy 72 2.5.2.1 Principle 72 2.5.2.2 Features, Advantage and Applicability for Paper-Component Analysis 74 2.5.3 Dying / Staining 75 3 Discussion of Results 77 3.1 Localization of ASA within the Sheet Structure 77 3.1.1 Choice of Dyes 77 3.1.1.1 Dye Type 78 3.1.1.2 Evaluation of Dye/ASA Mixtures 80 3.1.1.2.1 Maximum Soluble Dye Concentration 80 3.1.1.2.2 Thin Layer Chromatography 81 3.1.1.2.3 FTIR-Spectroscopy 82 3.1.1.3 Evaluation of the D-ASA Emulsion 84 3.1.1.4 Paper Chromatography with D-ASA & F-ASA Emulsions 85 3.1.1.5 Evaluation of the D-ASA Emulsion’s Sizing Efficiency 86 3.1.2 The Localization Method 87 3.1.2.1 The Correlation between ASA Distribution and Agglomeration 88 3.1.2.2 Measurement Settings 89 3.1.2.3 Manual Analysis 90 3.1.2.4 Automated Analysis 92 3.1.2.4.1 Automated Localization / Microscopy Measurement 92 3.1.2.4.2 Automated Analysis / Image-Processing 93 3.1.2.5 Result Interpretation and Example Results 96 3.1.2.6 Reproducibility 97 3.1.2.7 Sample Mapping 98 3.1.3 Approaches to Localization-Method Validation 102 3.1.3.1 Raman Spectroscopy 102 3.1.3.2 Confocal Laser Scanning Fluorescent Microscopy 102 3.1.3.3 Decolorization 103 3.2 Factors Impacting the Sizing Behavior of ASA 104 3.2.1 ASA Type 105 3.2.2 Emulsion Parameters 107 3.2.2.1 Hydrolyzed ASA Content 107 3.2.2.2 ASA/Starch Ratio 109 3.2.2.3 Emulsion Age 110 3.2.3 Stock Parameters 111 3.2.3.1 Long Fiber/Short Fiber Ratio 111 3.2.3.2 Furnish Type 112 3.2.3.3 Degree of Refining 114 3.2.3.4 Filler Type/Content 116 3.2.4 Process Parameters 119 3.2.4.1 Temperature 119 3.2.4.2 pH-Value 120 3.2.4.3 Conductivity 122 3.2.4.4 Water Hardness 123 3.2.4.5 Shear Rate 125 3.2.4.6 Dwell Time 127 3.2.4.7 Dosing Position & Dosing Order 128 3.2.4.8 Drying 130 3.2.4.9 Aging 131 3.3 Factors Impacting the Localization Behavior of ASA 132 3.3.1 Degree of Refining 132 3.3.2 Sheet Forming Conductivity 135 3.3.3 Water Hardness 136 3.3.4 Retention Aid (PAM) 137 3.3.5 Contact Curing 138 3.3.6 Accelerated Aging 139 3.4 Main Optimization Approach 141 3.4.1 Optimization of ASA Sizing Performance Characteristics 142 3.4.2 Emulsion Modification 144 3.4.2.1 Lab Trials / RDA Sheet Forming 146 3.4.2.2 TPM Trials 147 3.4.2.3 Industrial-Scale Trials 149 3.4.2.4 Correlation between Sizing Performance Optimization and Agglomeration Behavior on the Example of PAAE 152 3.5 Holistic Approach to Sizing Performance Explanation 154 4 Experimental Approach 157 4.1 Characterization of Methods, Measurements and Chemicals used for the Optical Localization-Analysis of ASA 157 4.1.1 Characterization of used Chemicals 157 4.1.1.1 Preparation of Dyed-ASA Solutions 157 4.1.1.2 Thin Layer Chromatography 157 4.1.1.3 Fourier Transformed Infrared Spectroscopy 157 4.1.1.4 Emulsification of ASA 158 4.1.1.5 Paper Chromatography 159 4.1.1.6 Particle Size Measurement 159 4.1.2 Optical Analysis of ASA Agglomerates 160 4.1.2.1 Microscopy 160 4.1.2.2 Automated Analysis 163 4.1.2.2.1 Adobe Photoshop 163 4.1.2.2.2 Adobe Illustrator 164 4.1.2.3 Confocal Laser Scanning Fluorescent Microscopy 166 4.2 Characterization of Used Standard Methods and Measurements 166 4.2.1 Stock and Paper Properties 166 4.2.1.1 Stock pH, Conductivity and Temperature Measurement 166 4.2.1.2 Dry Content / Consistency Measurement 167 4.2.1.3 Drainability (Schopper-Riegler) Measurement 167 4.2.1.4 Base Weight Measurement 168 4.2.1.5 Ultrasonic Penetration Measurement 168 4.2.1.6 Contact Angle Measurement 169 4.2.1.1 Cobb Measurement 169 4.2.1.2 Air Permeability Measurements 170 4.2.1.3 Tensile Strength Measurements 170 4.2.2 Preparation of Sample Sheets 171 4.2.2.1 Stock Preparation 171 4.2.2.2 Laboratory Refining (Valley Beater) 171 4.2.2.3 RDA Sheet Forming 171 4.2.2.4 Additive Dosing 173 4.2.2.5 Contact Curing 174 4.2.2.6 Hot Air Curing 174 4.2.2.7 Sample Aging 174 4.2.2.8 Preparation of Hydrolyzed ASA 175 4.2.2.9 Trial Paper Machine 175 4.2.2.10 Industrial-Scale Board Machine 177 4.3 Characterization of used Materials 178 4.3.1 Fibers 178 4.3.1.1 Reference Stock System 178 4.3.1.2 OCC Fibers 179 4.3.1.3 DIP Fibers 179 4.3.2 Fillers 180 4.3.3 Chemical Additives 180 4.3.3.1 ASA 180 4.3.3.2 Starches 181 4.3.3.3 Retention Aids 181 4.3.3.4 Poly Aluminum Compounds 181 4.3.3.5 Wet Strength Resin 181 4.3.4 Characterization of used Additives 182 4.3.4.1 Solids Content 182 4.4 Description of Implemented Advanced Data Analysis- and Visualization Methods 183 4.4.1 Design of Experiments (DOE183 4.4.2 Contour Plots 184 4.4.3 Box-Whisker Graphs 185 5 Conclusion 186 6 Outlook for Further Work 191 7 Bibliography 192 Appendix 207 7.1 Localization Method Reproducibility 207 7.2 DOE - Coefficient Lists 208 7.2.1 Trial 3.3.4 – Impact of Retention Aid (PAM) on Agglomeration Behavior and Sizing Performance 208 7.2.2 Trial 3.3.5 – Impact of Contact Curing on Agglomeration Behavior and Sizing Performance 208 7.2.3 Trial 3.3.6 – Impact of Accelerated Aging on Agglomeration Behavior and Sizing Performance 209

Page generated in 0.0687 seconds