• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 3
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A concept for nanoparticle-based photocatalytic treatment of wastewater from textile industry

Le, Hoai Nga 14 September 2018 (has links)
Industrial wastewater, such as the effluents from textile and garment companies, may contain toxic organic pollutants, which resist conventional wastewater treatment. Their complete and environmentally friendly degradation requires innovative technologies. Photocatalysis, an advanced oxidation process, can serve this purpose. Since 1972, when the photocatalytic activity of titanium dioxide was first noticed, photocatalysis has drawn the attention of scientists and engineers but it has not yet been widely applied in industrial practice. This is mainly related to the challenges of up-scaling from laboratory experiments to large production sites. The main goal of this thesis is to develop a concept of nanoparticle-based photocatalysis for the treatment of wastewater. Ideally, process parameters should be adjustable and process conditions should be well-defined. These constraints are prerequisite for establishing process models and comparing the photocatalytic efficiency of different photocatalysts or for different pollutants. More importantly, the configuration should be scalable, in order to cover a wide spectrum of applications. In response to these requirements, this thesis introduces a new reactor concept for photocatalytic wastewater treatment, which relies on finely dispersed photocatalysts as well as uniform and defined process conditions with regard to illumination and flow. The concept was realized in a photocatalytic setup with an illuminated flow reactor. The flow channel has a rectangular cross section and meanders in a plane exposed to two dimensional illumination. Crucial process parameters, e.g., volumetric flow rate and light intensity, can be adjusted in a defined manner. This facilitates the study on the photocatalytic degradation of different organic pollutants in the presence of various photocatalytic materials under arbitrary illumination. The thesis provides a comprehensive description of the operational procedures necessary to run photocatalytic reactions in the experimental setup. It includes three main steps: i) dispersion of photocatalysts, ii) equilibration with respect to pollutant adsorption and iii) accomplishing the photocatalytic reaction. Samples are collected in a mixing tank for online or offline analysis. The proceeding decrease in the concentration of organic pollutant is used to assess the activity of the photocatalytic materials. A particular focus lies on the first of these steps, the dispersion of photocatalysts, because it is ignored in most studies. Typically, photocatalysts are in an aggregated state. The thesis demonstrates that type, intensity and energy of dispersion exert a crucial influence on size and morphology of the photocatalyst particles and, thus, on their optical properties and, accordingly, macroscopic photocatalytic behavior. Apart from this, a proper dispersion is necessary to reduce speed of gravitational solid-liquid separation, at best, to prevent catalyst sedimentation and to avoid misleading results. The photocatalytic performance was intensively investigated for the color removal of a model dye substance, methylene blue. Commercial titanium dioxide nanoparticles, widely explored in literature, were used as a photocatalyst. Their characteristics (size, morphology, stability and optical properties) were determined. Photocatalytic experiments were carried out under UV irradiation. Influences of different factors, including the concentration of the photocatalyst, the concentration of the organic compounds, light intensity, optical pathlength and pH were examined. The degradation was quantified via the decrease of methylene blue concentration. This conversion is, however, an immediate result influenced by all process parameters, e.g., the volume, the light intensity, the optical pathlength. Hence, kinetic models on macroscopic and microscopic levels are established. Normalizations with respect to process conditions are proposed. The apparent reaction kinetics are traced back to volume- and intensity-related reaction rate constants, and the reaction rate constant at the illuminated surface of the reactor. Additionally, the model is modified to be used for time-variant UV intensities, as encountered for solar photocatalysis. These achievements allow for a comparison of the experimental results from different laboratories. Moreover, they are prerequisite for the translation of laboratory results into large scale plants. Selected case studies for further applications are introduced. The photocatalytic degradation of different organic molecules (one antibiotic and two commercial dyes) with different photocatalytic materials (commercial nanomaterials and self-synthesized magnetic particles) under artificial or natural light sources was performed. Additionally, photocatalysis was studied in a realistic application. Preliminary tests with dye solutions of a textile company in Danang, Vietnam, impressively showed the feasibility of wastewater treatment by means of photocatalysis. Based on the reported capacity of wastewater in the current treatment plant of the company, the necessary process parameters were assessed. The rough estimation showed that photocatalysis can improve the working ability of the current wastewater treatment plant. In conclusion, this thesis presents a concept for wastewater treatment by slurry photocatalysis. As the process conditions are adjustable and definable, the process can be ideally performed in laboratories for research purposes, where different materials need to be tested and the working volume can be lower than hundreds of milliliters. The photocatalytic configuration is expected to work with a capacity of hundreds of liters, although appropriate experimental evidences are reserved for further up-scaling studies.
2

Entwicklung eines mikrobiologischen Schnelltests zur Prozessoptimierung von Biogasanlagen

Gasch, Carina 04 March 2014 (has links) (PDF)
Im Rahmen dieser Arbeit wurden verschiedene zweiphasige Vergärungssysteme hinsichtlich der mikrobiellen Biomasse und Abbauaktivität charakterisiert, mit dem Ziel, eine mikrobiologische Prozessüberwachung zu ermöglichen. Bei der analytischen Begleitung des Biogasprozesses stellte sich heraus, dass viele Biomasse- und Aktivitätsparameter anlagen- bzw. substratspezifische Werte aufweisen und Prozessstörungen bzw. Verfahrensmodifikationen über diese mikrobiologischen Kenngrößen detektiert und verifiziert werden können. Im Normalbetrieb der Vergärung von Maissilage konnte in der Hydrolysestufe eine starke Vermehrung der mikrobiellen Gesamtzellzahl sowie eine Zunahme des Archaea:Bacteria-Verhältnisses verzeichnet werden. Die Aktivitätsprofile von Hydrolasen (unspezifische Esterase, Polysaccharasen und Proteasen) erlaubten eine Visualisierung des Hydrolysefortschritts. Hierbei erwiesen sich die Esterase-, Cellulase- und Xylanaseaktivität als besonders aussagekräftig. Ähnlich ermöglichte dies die Analyse der Atmungsaktivität, die die mikrobielle Abbauaktivität des Eingangs- bzw. das Restgaspotential des Ausgangsmaterials der Hydrolysestufe wiedergibt. Die phylogenetischen Analysen der ersten Prozessstufe zeigten eine klare Dominanz von cellulolytischen Bakterien der Gattung Clostridium (Ø 35%). Der Anteil der hydrogenotrophen Methanogenen lag in den untersuchten Systemen etwa 50% über dem der Acetoklastischen, was darauf schließen lässt, dass der hydrogenotrophe Methanbildungsweg favorisiert wird. Es wurde aber auch eine erhöhte Abundanz der nicht-methanogenen Crenarchaeota festgestellt, deren Rolle im Biogasprozess noch ungeklärt ist. Im Zuge dieser Arbeit wurde weiterhin die Vergärbarkeit von HCH-belasteter Grassilage bzw. ein potentieller mikrobieller β-HCH-Abbau untersucht. Hier konnte gezeigt werden, dass die Aktivität der Mikroorganismen durch die Schadstoffbelastung des Substrates nicht inhibiert war. Darüber hinaus konnte ein Abbau des β-HCH nach der Hydrolyse der Grassilage nachgewiesen werden. Durch das Auftreten von Prozessstörungen bzw. Verfahrensmodifikationen konnten die Auswirkungen auf die untersuchten mikrobiologischen Kenngrößen näher untersucht und u. a. auch statistisch abgesichert verifiziert werden. Korrelationsanalysen verdeutlichten die mikrobiellen bzw. biochemischen Zusammenhänge im System. Besonders interessant sind dabei die signifikanten Korrelationen zwischen der Gesamtzellzahl, der Esteraseaktivität und dem Chemischen Sauerstoffbedarf, die für jede Verfahrensstufe nachgewiesen werden konnten. Diese Analysen zeigten erstmalig, dass die unspezifische Esteraseaktivität als allgemeiner mikrobieller Aktivitätsparameter in verschiedenen Prozessstufen von Biogasanlagen als Indikator zur Prozesseffizienz und -stabilität einsetzbar ist. Daher wurde die Methodik als Schnelltest weiterentwickelt, der auch vor Ort Anwendung finden kann. Dies ermöglicht eine direkte Analyse des Biogassubstrates, der Effizienz der Substratumsetzung sowie die Detektion von Störungen und eine entsprechende Steuerung und Regelung des Prozesses.
3

Entwicklung eines mikrobiologischen Schnelltests zur Prozessoptimierung von Biogasanlagen

Gasch, Carina 05 February 2014 (has links)
Im Rahmen dieser Arbeit wurden verschiedene zweiphasige Vergärungssysteme hinsichtlich der mikrobiellen Biomasse und Abbauaktivität charakterisiert, mit dem Ziel, eine mikrobiologische Prozessüberwachung zu ermöglichen. Bei der analytischen Begleitung des Biogasprozesses stellte sich heraus, dass viele Biomasse- und Aktivitätsparameter anlagen- bzw. substratspezifische Werte aufweisen und Prozessstörungen bzw. Verfahrensmodifikationen über diese mikrobiologischen Kenngrößen detektiert und verifiziert werden können. Im Normalbetrieb der Vergärung von Maissilage konnte in der Hydrolysestufe eine starke Vermehrung der mikrobiellen Gesamtzellzahl sowie eine Zunahme des Archaea:Bacteria-Verhältnisses verzeichnet werden. Die Aktivitätsprofile von Hydrolasen (unspezifische Esterase, Polysaccharasen und Proteasen) erlaubten eine Visualisierung des Hydrolysefortschritts. Hierbei erwiesen sich die Esterase-, Cellulase- und Xylanaseaktivität als besonders aussagekräftig. Ähnlich ermöglichte dies die Analyse der Atmungsaktivität, die die mikrobielle Abbauaktivität des Eingangs- bzw. das Restgaspotential des Ausgangsmaterials der Hydrolysestufe wiedergibt. Die phylogenetischen Analysen der ersten Prozessstufe zeigten eine klare Dominanz von cellulolytischen Bakterien der Gattung Clostridium (Ø 35%). Der Anteil der hydrogenotrophen Methanogenen lag in den untersuchten Systemen etwa 50% über dem der Acetoklastischen, was darauf schließen lässt, dass der hydrogenotrophe Methanbildungsweg favorisiert wird. Es wurde aber auch eine erhöhte Abundanz der nicht-methanogenen Crenarchaeota festgestellt, deren Rolle im Biogasprozess noch ungeklärt ist. Im Zuge dieser Arbeit wurde weiterhin die Vergärbarkeit von HCH-belasteter Grassilage bzw. ein potentieller mikrobieller β-HCH-Abbau untersucht. Hier konnte gezeigt werden, dass die Aktivität der Mikroorganismen durch die Schadstoffbelastung des Substrates nicht inhibiert war. Darüber hinaus konnte ein Abbau des β-HCH nach der Hydrolyse der Grassilage nachgewiesen werden. Durch das Auftreten von Prozessstörungen bzw. Verfahrensmodifikationen konnten die Auswirkungen auf die untersuchten mikrobiologischen Kenngrößen näher untersucht und u. a. auch statistisch abgesichert verifiziert werden. Korrelationsanalysen verdeutlichten die mikrobiellen bzw. biochemischen Zusammenhänge im System. Besonders interessant sind dabei die signifikanten Korrelationen zwischen der Gesamtzellzahl, der Esteraseaktivität und dem Chemischen Sauerstoffbedarf, die für jede Verfahrensstufe nachgewiesen werden konnten. Diese Analysen zeigten erstmalig, dass die unspezifische Esteraseaktivität als allgemeiner mikrobieller Aktivitätsparameter in verschiedenen Prozessstufen von Biogasanlagen als Indikator zur Prozesseffizienz und -stabilität einsetzbar ist. Daher wurde die Methodik als Schnelltest weiterentwickelt, der auch vor Ort Anwendung finden kann. Dies ermöglicht eine direkte Analyse des Biogassubstrates, der Effizienz der Substratumsetzung sowie die Detektion von Störungen und eine entsprechende Steuerung und Regelung des Prozesses.
4

Temperiertes Innenhochdruck-Umformen von Rohren aus Magnesium- und Aluminiumlegierungen

Seifert, Michael 25 November 2008 (has links) (PDF)
Die Anwendungsmöglichkeiten und Potenziale des temperierten Innenhochdruck-Umformens mit flüssigen Wirkmedien (T-IHU) von Rohren aus verschiedenen Magnesium- und Aluminiumknetlegierungen werden in der vorliegenden Arbeit aufgezeigt. Neben der Werkstoff- und Halbzeugcharakterisierung, der Auslegung von temperierten Innenhochdruck-Umformanlagen und –werkzeugen, den Thermografiemessungen am Halbzeug unter Realbedingungen und der Verifizierung der Simulationsergebnisse des T-IHU-Werkzeuges war der inhaltliche Schwerpunkt die systematische experimentelle Bestimmung der maximalen Umfangserweiterung ∆u<sub>max</sub> in Anhängigkeit von der Umformtemperatur ϑ<sub>u</sub>, dem Werkstoff und der Wanddicke s<sub>0</sub> im Temperaturbereich von 22°C bis 300°C an drei Versuchsgeometrien T-Stück, Zylinder und Quader bei Innendrücken bis 800 bar. Neben dem Einfluss der Prozessparameter, der Werkstoff- und Halbzeugeigenschaften und der Ausgangswanddicke wurde der signifikante Einfluss der Umformtemperatur und der Umformgeometrie auf die erreichbaren Umfangserweiterungen herausgearbeitet und systematisch dargestellt. Es wurden Umfangsdehnungen von bis zu 120 % (bei ϑ<sub>u</sub> = 300°C) erzielt. Die experimentelle Bestimmung der minimal auszuformenden Bauteilaußenradien erfolgte unter Anwendung der statistischen Versuchsplanung. Aus den Regressionsgleichungen wurde eine neue Berechnungsgleichung für den maximalen Innendruck p<sub>imax</sub> generiert. Durch die Verifikation dieser Gleichung konnte die hohe Genauigkeit bei der Vorausberechnung des erforderlichen Innendruckes bei einem vorgegebenen minimalen Bauteilaußenradius R<sub>min</sub> in Abhängigkeit von der Zugfestigkeit R<sub>m</sub> als f (Umformtemperatur) und der Wanddicke s<sub>0</sub> nachgewiesen werden. Die Auslegung der T-IHU-Werkzeug- und Anlagentechnik kann damit wesentlich genauer er­folgen. Durch die Bauteilanalysen nach dem T-IHU-Prozess konnten die hohe Maß- und Formgenauigkeit und die hohe und gleichmäßigere Oberflächengüte nachgewiesen werden. Trotz der beginnenden dynamischen Rekristallisation lag bei allen Versuchswerkstoffen eine Erhöhung der Werkstofffestigkeit in der Umformzone vor. Bei den Untersuchungen bzgl. des T-IHU des Realbauteiles „PKW-Querträger vorn“ konnten die Kenntnisse der Grundlagenuntersuchungen auf ein komplex geformtes Realteil übertragen und erweitert werden. Es zeigte sich, dass der Einsatz von T-IHU-Magnesiumbauteilen ein erhebliches Potenzial für weitere Gewichtsreduzierungen von Leichtbaukonstruktionen besitzt. / This paper presents the potential applications of temperature-supported hydroforming of various magnesium and aluminium alloy tubes using active liquid media. It includes details of material and semi-finished product characterisation, the design of temperature-supported hydroforming equipment and tools, thermography measurements on the semi-finished product under real conditions and verification of simulation results for the temperature-supported hydroforming tool. The main focus, however, was the systematic, experimental approach to determining the maximum increase in perimeter ∆u<sub>max</sub> as a function of the forming temperature ϑ<sub>u</sub>, the material and the wall thickness s<sub>0</sub> in the temperature range 22°C to 300°C for three trial geometries (T‑piece, cylinder and cuboid) at internal pressures of up to 800 bar. In addition to studying the effect of process parameters, material properties, semi-finished product characteristics and initial wall thickness, the paper also presents the finding that forming temperature and forming geometry have a significant impact on achievable increases in perimeter. Perimeter expansions of up to 120 % were attained (at ϑ<sub>u</sub> = 300°C). Statistically designed experiments were used to determine the minimum component outside-radii to undergo the forming process. A new equation for calculating the maximum internal pressure p<sub>imax</sub> was generated from regression equations. By verifying this equation, it was possible to demonstrate the high level of accuracy in predicting the internal pressure required for a given minimum component outside-radius R<sub>min</sub> as a function of the tensile strength R<sub>m</sub> as f(forming temperature) and of the wall thickness s<sub>0</sub>. This means that the temperature-supported hydroforming tool and system equipment can be designed far more accurately. Component analyses after the temperature-supported hydroforming process demonstrated the high level of dimensional and geometrical accuracy and the high quality and more consistent surface finish. Despite the onset of dynamic re-crystallisation, the strength of the material was increased in the forming zone in all the materials tested. The knowledge gained from researching the fundamental principles was applied to a real component with a complex shape in studies of temperature-supported hydroforming of the "front car cross-member", which provided further useful insights. It was found that the use of temperature-supported hydroforming magnesium components has considerable potential for further weight reduction in lightweight constructions.
5

Identifikation und Reduzierung realer Schwankungen durch praxistaugliche Prozessführungsmethoden beim Spritzgießen / Identification and reduction of quality fluctuations through practical injection molding process control methods

Eben, Johannes 16 February 2015 (has links) (PDF)
Eine stetig gleichbleibende hohe Qualität zu fertigen, ist erklärtes Ziel des Spritzgießgewer-bes. Aus technischen oder wirtschaftlichen Gründen ist es jedoch nicht möglich, für konstan-te Produktionsrahmenbedingungen zu sorgen. Die effizienteste Methode ist , die Schwan-kungen über die Wahl der richtigen Prozessführungsmethode auszugleichen. Im ersten Teil der Arbeit konnte herausgefunden werden, welche praxisrelevanten Störgrö-ßen einen Einfluss auf den Spritzgießprozess haben und wie sie sich auswirken. Bei den Materialparametern sind Änderungen der Viskosität (15 %) und der Einfriertemperatur des Materials (4 °C) am Einzug festzustellen. Zusätzlich veränderte sich das Messverhalten der Drucksensoren, wodurch ein Drift von 5 bar entstand. Störgrößenbedingt änderten sich auch die Prozesstemperaturen um 1 °C. Im zweiten Teil der Arbeit werden diverse, während der Arbeit entwickelte, Prozessfüh-rungsmethoden miteinander verglichen. Aufgabe war es, die im ersten Teil gefundenen rea-len störgrößenbedingten Einflüsse zu kompensieren. Es stellte sich heraus, dass sich ledig-lich die materialbedingten Schwankungen nicht ausgleichen lassen. Zumindest können de-ren Auswirkungen durch eine Regelung der werkstoffnahen Parameter abschwächt werden. / To produce a steady consistent high quality is the declared goal of the injection moulding industry. For technical or economic reasons, it is not possible to ensure constant production framework conditions. The proper method is to compensate the variable influences with the choice of the correct process control method. The first part of the thesis focuses on the analysis of the different disturbances factors. The investigation showed that the material property, melt viscosity, varies about 15% and the recrystallisation temperature arises a deviation of 4°C. Another changes could be measured in the offset of the pressure sensor (5 bar) and the process temperatures (1°C). The next goal was to find a suitable control method to balance these intermittencies. The test series showed clearly that changes in the material properties could not be compensated. But there impact toward the quality could be extenuated with a constant course of the process parameter in the cavity.
6

Temperiertes Innenhochdruck-Umformen von Rohren aus Magnesium- und Aluminiumlegierungen

Seifert, Michael 06 June 2008 (has links)
Die Anwendungsmöglichkeiten und Potenziale des temperierten Innenhochdruck-Umformens mit flüssigen Wirkmedien (T-IHU) von Rohren aus verschiedenen Magnesium- und Aluminiumknetlegierungen werden in der vorliegenden Arbeit aufgezeigt. Neben der Werkstoff- und Halbzeugcharakterisierung, der Auslegung von temperierten Innenhochdruck-Umformanlagen und –werkzeugen, den Thermografiemessungen am Halbzeug unter Realbedingungen und der Verifizierung der Simulationsergebnisse des T-IHU-Werkzeuges war der inhaltliche Schwerpunkt die systematische experimentelle Bestimmung der maximalen Umfangserweiterung ∆u<sub>max</sub> in Anhängigkeit von der Umformtemperatur ϑ<sub>u</sub>, dem Werkstoff und der Wanddicke s<sub>0</sub> im Temperaturbereich von 22°C bis 300°C an drei Versuchsgeometrien T-Stück, Zylinder und Quader bei Innendrücken bis 800 bar. Neben dem Einfluss der Prozessparameter, der Werkstoff- und Halbzeugeigenschaften und der Ausgangswanddicke wurde der signifikante Einfluss der Umformtemperatur und der Umformgeometrie auf die erreichbaren Umfangserweiterungen herausgearbeitet und systematisch dargestellt. Es wurden Umfangsdehnungen von bis zu 120 % (bei ϑ<sub>u</sub> = 300°C) erzielt. Die experimentelle Bestimmung der minimal auszuformenden Bauteilaußenradien erfolgte unter Anwendung der statistischen Versuchsplanung. Aus den Regressionsgleichungen wurde eine neue Berechnungsgleichung für den maximalen Innendruck p<sub>imax</sub> generiert. Durch die Verifikation dieser Gleichung konnte die hohe Genauigkeit bei der Vorausberechnung des erforderlichen Innendruckes bei einem vorgegebenen minimalen Bauteilaußenradius R<sub>min</sub> in Abhängigkeit von der Zugfestigkeit R<sub>m</sub> als f (Umformtemperatur) und der Wanddicke s<sub>0</sub> nachgewiesen werden. Die Auslegung der T-IHU-Werkzeug- und Anlagentechnik kann damit wesentlich genauer er­folgen. Durch die Bauteilanalysen nach dem T-IHU-Prozess konnten die hohe Maß- und Formgenauigkeit und die hohe und gleichmäßigere Oberflächengüte nachgewiesen werden. Trotz der beginnenden dynamischen Rekristallisation lag bei allen Versuchswerkstoffen eine Erhöhung der Werkstofffestigkeit in der Umformzone vor. Bei den Untersuchungen bzgl. des T-IHU des Realbauteiles „PKW-Querträger vorn“ konnten die Kenntnisse der Grundlagenuntersuchungen auf ein komplex geformtes Realteil übertragen und erweitert werden. Es zeigte sich, dass der Einsatz von T-IHU-Magnesiumbauteilen ein erhebliches Potenzial für weitere Gewichtsreduzierungen von Leichtbaukonstruktionen besitzt. / This paper presents the potential applications of temperature-supported hydroforming of various magnesium and aluminium alloy tubes using active liquid media. It includes details of material and semi-finished product characterisation, the design of temperature-supported hydroforming equipment and tools, thermography measurements on the semi-finished product under real conditions and verification of simulation results for the temperature-supported hydroforming tool. The main focus, however, was the systematic, experimental approach to determining the maximum increase in perimeter ∆u<sub>max</sub> as a function of the forming temperature ϑ<sub>u</sub>, the material and the wall thickness s<sub>0</sub> in the temperature range 22°C to 300°C for three trial geometries (T‑piece, cylinder and cuboid) at internal pressures of up to 800 bar. In addition to studying the effect of process parameters, material properties, semi-finished product characteristics and initial wall thickness, the paper also presents the finding that forming temperature and forming geometry have a significant impact on achievable increases in perimeter. Perimeter expansions of up to 120 % were attained (at ϑ<sub>u</sub> = 300°C). Statistically designed experiments were used to determine the minimum component outside-radii to undergo the forming process. A new equation for calculating the maximum internal pressure p<sub>imax</sub> was generated from regression equations. By verifying this equation, it was possible to demonstrate the high level of accuracy in predicting the internal pressure required for a given minimum component outside-radius R<sub>min</sub> as a function of the tensile strength R<sub>m</sub> as f(forming temperature) and of the wall thickness s<sub>0</sub>. This means that the temperature-supported hydroforming tool and system equipment can be designed far more accurately. Component analyses after the temperature-supported hydroforming process demonstrated the high level of dimensional and geometrical accuracy and the high quality and more consistent surface finish. Despite the onset of dynamic re-crystallisation, the strength of the material was increased in the forming zone in all the materials tested. The knowledge gained from researching the fundamental principles was applied to a real component with a complex shape in studies of temperature-supported hydroforming of the "front car cross-member", which provided further useful insights. It was found that the use of temperature-supported hydroforming magnesium components has considerable potential for further weight reduction in lightweight constructions.
7

Identifikation und Reduzierung realer Schwankungen durch praxistaugliche Prozessführungsmethoden beim Spritzgießen

Eben, Johannes 07 November 2014 (has links)
Eine stetig gleichbleibende hohe Qualität zu fertigen, ist erklärtes Ziel des Spritzgießgewer-bes. Aus technischen oder wirtschaftlichen Gründen ist es jedoch nicht möglich, für konstan-te Produktionsrahmenbedingungen zu sorgen. Die effizienteste Methode ist , die Schwan-kungen über die Wahl der richtigen Prozessführungsmethode auszugleichen. Im ersten Teil der Arbeit konnte herausgefunden werden, welche praxisrelevanten Störgrö-ßen einen Einfluss auf den Spritzgießprozess haben und wie sie sich auswirken. Bei den Materialparametern sind Änderungen der Viskosität (15 %) und der Einfriertemperatur des Materials (4 °C) am Einzug festzustellen. Zusätzlich veränderte sich das Messverhalten der Drucksensoren, wodurch ein Drift von 5 bar entstand. Störgrößenbedingt änderten sich auch die Prozesstemperaturen um 1 °C. Im zweiten Teil der Arbeit werden diverse, während der Arbeit entwickelte, Prozessfüh-rungsmethoden miteinander verglichen. Aufgabe war es, die im ersten Teil gefundenen rea-len störgrößenbedingten Einflüsse zu kompensieren. Es stellte sich heraus, dass sich ledig-lich die materialbedingten Schwankungen nicht ausgleichen lassen. Zumindest können de-ren Auswirkungen durch eine Regelung der werkstoffnahen Parameter abschwächt werden. / To produce a steady consistent high quality is the declared goal of the injection moulding industry. For technical or economic reasons, it is not possible to ensure constant production framework conditions. The proper method is to compensate the variable influences with the choice of the correct process control method. The first part of the thesis focuses on the analysis of the different disturbances factors. The investigation showed that the material property, melt viscosity, varies about 15% and the recrystallisation temperature arises a deviation of 4°C. Another changes could be measured in the offset of the pressure sensor (5 bar) and the process temperatures (1°C). The next goal was to find a suitable control method to balance these intermittencies. The test series showed clearly that changes in the material properties could not be compensated. But there impact toward the quality could be extenuated with a constant course of the process parameter in the cavity.
8

Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA) / Physikochemische Prozesse während der Reaktivleimung mit Alkenyl-Bernsteinsäure-Anhydrid (ASA)

Porkert, Sebastian 27 February 2017 (has links) (PDF)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure. The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors. This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry. The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.
9

Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA)

Porkert, Sebastian 09 December 2016 (has links)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure. The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors. This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry. The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.:Acknowledgment I Abstract III Table of Content V List of Illustrations XI List of Tables XVI List of Formulas XVII List of Abbreviations XVIII 1 Introduction and Problem Description 1 1.1 Initial Situation 1 1.2 Objective 2 2 Theoretical Approach 3 2.1 The Modern Paper & Board Industry on the Example of Germany 3 2.1.1 Raw Materials for the Production of Paper & Board 5 2.2 The Sizing of Paper & Board 8 2.2.1 Introduction to Paper & Board Sizing 8 2.2.2 The Definition of Paper & Board Sizing 10 2.2.3 The Global Markets for Sized Paper & Board Products and Sizing Agents 11 2.2.4 Physical and Chemical Background to the Mechanisms of Surface-Wetting and Penetration 13 2.2.4.1 Surface Wetting 14 2.2.4.2 Liquid Penetration 15 2.2.5 Surface and Internal Sizing 17 2.2.6 Sizing Agents 18 2.2.6.1 Alkenyl Succinic Anhydride (ASA) 19 2.2.6.2 Rosin Sizes 19 2.2.6.3 Alkylketen Dimer (AKD) 23 2.2.6.4 Polymeric Sizing Agents (PSA) 26 2.2.7 Determination of the Sizing Degree (Performance Analysis) 28 2.2.7.1 Cobb Water Absorption 29 2.2.7.2 Contact Angle Measurement 30 2.2.7.3 Penetration Dynamics Analysis 31 2.2.7.4 Further Qualitative Analysis Methods 33 2.2.7.4.1 Ink Stroke 33 2.2.7.4.2 Immersion Test 33 2.2.7.4.3 Floating Test 34 2.2.7.4.4 Hercules Sizing Tester (HST) 34 2.2.8 Sizing Agent Detection (Qualitative Analysis) and Determination of the Sizing Agent Content (Quantitative Analysis) 35 2.2.8.1 Destructive Methods 35 2.2.8.2 Non Destructive Methods 36 2.3 Alkenyl Succinic Anhydride (ASA) 36 2.3.1.1 Chemical Composition and Production of ASA 37 2.3.1.2 Mechanistic Reaction Models 39 2.3.1.3 ASA Application 42 2.3.1.3.1 Emulsification 42 2.3.1.3.2 Dosing 44 2.3.1.4 Mechanistic Steps of ASA Sizing 46 2.3.2 Physico-Chemical Aspects during ASA Sizing 48 2.3.2.1 Reaction Plausibility 48 2.3.2.1.1 Educt-Product Balance / Kinetics 48 2.3.2.1.2 Energetics 51 2.3.2.1.3 Sterics 52 2.3.2.2 Phenomena based on Sizing Agent Mobility 53 2.3.2.2.1 Sizing Agent Orientation 54 2.3.2.2.2 Intra-Molecular Orientation 55 2.3.2.2.3 Sizing Agent Agglomeration 55 2.3.2.2.4 Fugitive Sizing / Sizing Loss / Size Reversion 56 2.3.2.2.5 Sizing Agent Migration 58 2.3.2.2.6 Sizing Reactivation / Sizing Agent Reorientation 59 2.3.3 Causes for Interactions during ASA Sizing 60 2.3.3.1 Process Parameters 61 2.3.3.1.1 Temperature 61 2.3.3.1.2 pH-Value 62 2.3.3.1.3 Water Hardness 63 2.3.3.2 Fiber Types 64 2.3.3.3 Filler Types 65 2.3.3.4 Cationic Additives 66 2.3.3.5 Anionic Additives 67 2.3.3.6 Surface-Active Additives 68 2.4 Limitations of State-of-the-Art ASA-Sizing Analysis 69 2.5 Optical ASA Localization 71 2.5.1 General Background 71 2.5.2 Confocal Microscopy 72 2.5.2.1 Principle 72 2.5.2.2 Features, Advantage and Applicability for Paper-Component Analysis 74 2.5.3 Dying / Staining 75 3 Discussion of Results 77 3.1 Localization of ASA within the Sheet Structure 77 3.1.1 Choice of Dyes 77 3.1.1.1 Dye Type 78 3.1.1.2 Evaluation of Dye/ASA Mixtures 80 3.1.1.2.1 Maximum Soluble Dye Concentration 80 3.1.1.2.2 Thin Layer Chromatography 81 3.1.1.2.3 FTIR-Spectroscopy 82 3.1.1.3 Evaluation of the D-ASA Emulsion 84 3.1.1.4 Paper Chromatography with D-ASA & F-ASA Emulsions 85 3.1.1.5 Evaluation of the D-ASA Emulsion’s Sizing Efficiency 86 3.1.2 The Localization Method 87 3.1.2.1 The Correlation between ASA Distribution and Agglomeration 88 3.1.2.2 Measurement Settings 89 3.1.2.3 Manual Analysis 90 3.1.2.4 Automated Analysis 92 3.1.2.4.1 Automated Localization / Microscopy Measurement 92 3.1.2.4.2 Automated Analysis / Image-Processing 93 3.1.2.5 Result Interpretation and Example Results 96 3.1.2.6 Reproducibility 97 3.1.2.7 Sample Mapping 98 3.1.3 Approaches to Localization-Method Validation 102 3.1.3.1 Raman Spectroscopy 102 3.1.3.2 Confocal Laser Scanning Fluorescent Microscopy 102 3.1.3.3 Decolorization 103 3.2 Factors Impacting the Sizing Behavior of ASA 104 3.2.1 ASA Type 105 3.2.2 Emulsion Parameters 107 3.2.2.1 Hydrolyzed ASA Content 107 3.2.2.2 ASA/Starch Ratio 109 3.2.2.3 Emulsion Age 110 3.2.3 Stock Parameters 111 3.2.3.1 Long Fiber/Short Fiber Ratio 111 3.2.3.2 Furnish Type 112 3.2.3.3 Degree of Refining 114 3.2.3.4 Filler Type/Content 116 3.2.4 Process Parameters 119 3.2.4.1 Temperature 119 3.2.4.2 pH-Value 120 3.2.4.3 Conductivity 122 3.2.4.4 Water Hardness 123 3.2.4.5 Shear Rate 125 3.2.4.6 Dwell Time 127 3.2.4.7 Dosing Position & Dosing Order 128 3.2.4.8 Drying 130 3.2.4.9 Aging 131 3.3 Factors Impacting the Localization Behavior of ASA 132 3.3.1 Degree of Refining 132 3.3.2 Sheet Forming Conductivity 135 3.3.3 Water Hardness 136 3.3.4 Retention Aid (PAM) 137 3.3.5 Contact Curing 138 3.3.6 Accelerated Aging 139 3.4 Main Optimization Approach 141 3.4.1 Optimization of ASA Sizing Performance Characteristics 142 3.4.2 Emulsion Modification 144 3.4.2.1 Lab Trials / RDA Sheet Forming 146 3.4.2.2 TPM Trials 147 3.4.2.3 Industrial-Scale Trials 149 3.4.2.4 Correlation between Sizing Performance Optimization and Agglomeration Behavior on the Example of PAAE 152 3.5 Holistic Approach to Sizing Performance Explanation 154 4 Experimental Approach 157 4.1 Characterization of Methods, Measurements and Chemicals used for the Optical Localization-Analysis of ASA 157 4.1.1 Characterization of used Chemicals 157 4.1.1.1 Preparation of Dyed-ASA Solutions 157 4.1.1.2 Thin Layer Chromatography 157 4.1.1.3 Fourier Transformed Infrared Spectroscopy 157 4.1.1.4 Emulsification of ASA 158 4.1.1.5 Paper Chromatography 159 4.1.1.6 Particle Size Measurement 159 4.1.2 Optical Analysis of ASA Agglomerates 160 4.1.2.1 Microscopy 160 4.1.2.2 Automated Analysis 163 4.1.2.2.1 Adobe Photoshop 163 4.1.2.2.2 Adobe Illustrator 164 4.1.2.3 Confocal Laser Scanning Fluorescent Microscopy 166 4.2 Characterization of Used Standard Methods and Measurements 166 4.2.1 Stock and Paper Properties 166 4.2.1.1 Stock pH, Conductivity and Temperature Measurement 166 4.2.1.2 Dry Content / Consistency Measurement 167 4.2.1.3 Drainability (Schopper-Riegler) Measurement 167 4.2.1.4 Base Weight Measurement 168 4.2.1.5 Ultrasonic Penetration Measurement 168 4.2.1.6 Contact Angle Measurement 169 4.2.1.1 Cobb Measurement 169 4.2.1.2 Air Permeability Measurements 170 4.2.1.3 Tensile Strength Measurements 170 4.2.2 Preparation of Sample Sheets 171 4.2.2.1 Stock Preparation 171 4.2.2.2 Laboratory Refining (Valley Beater) 171 4.2.2.3 RDA Sheet Forming 171 4.2.2.4 Additive Dosing 173 4.2.2.5 Contact Curing 174 4.2.2.6 Hot Air Curing 174 4.2.2.7 Sample Aging 174 4.2.2.8 Preparation of Hydrolyzed ASA 175 4.2.2.9 Trial Paper Machine 175 4.2.2.10 Industrial-Scale Board Machine 177 4.3 Characterization of used Materials 178 4.3.1 Fibers 178 4.3.1.1 Reference Stock System 178 4.3.1.2 OCC Fibers 179 4.3.1.3 DIP Fibers 179 4.3.2 Fillers 180 4.3.3 Chemical Additives 180 4.3.3.1 ASA 180 4.3.3.2 Starches 181 4.3.3.3 Retention Aids 181 4.3.3.4 Poly Aluminum Compounds 181 4.3.3.5 Wet Strength Resin 181 4.3.4 Characterization of used Additives 182 4.3.4.1 Solids Content 182 4.4 Description of Implemented Advanced Data Analysis- and Visualization Methods 183 4.4.1 Design of Experiments (DOE183 4.4.2 Contour Plots 184 4.4.3 Box-Whisker Graphs 185 5 Conclusion 186 6 Outlook for Further Work 191 7 Bibliography 192 Appendix 207 7.1 Localization Method Reproducibility 207 7.2 DOE - Coefficient Lists 208 7.2.1 Trial 3.3.4 – Impact of Retention Aid (PAM) on Agglomeration Behavior and Sizing Performance 208 7.2.2 Trial 3.3.5 – Impact of Contact Curing on Agglomeration Behavior and Sizing Performance 208 7.2.3 Trial 3.3.6 – Impact of Accelerated Aging on Agglomeration Behavior and Sizing Performance 209

Page generated in 0.0806 seconds