• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Considerações sobre o manejo de irrigação na produtividade e qualidade de gemas de cana-de-açúcar para viveiros de mudas-pré-brotadas (MPB) / Water management considerations on productivity and quality of sugarcane seedlings to the formation of bud chips nursery

Fraga Junior, Eusimio Felisbino 29 April 2015 (has links)
O cultivo da cana-de-açúcar depara-se com a falta de tecnologias alternativas inovadoras para impulsionar sua produtividade diante dos crescentes custos de mão de obra e insumos, tornando-se essencial aumentar a produtividade da cana de forma sustentável. A cana-de-açúcar é comercialmente plantada, utilizando-se cortes de toletes ou gemas. Este método de cultivo está se tornando gradualmente antieconômico, devido ao elevado custo das \"áreas de viveiros\" usadas para a renovação de canaviais, que demandam mais de 20 por cento do custo total de produção para renovação/novos plantios. Dessa forma, necessita-se de métodos alternativos de plantio, que impulsionem a produtividade da cana-de-açúcar sobre princípios de um planejamento adequado; entre outras práticas, devem estar inclusas a formação de viveiros sadios, com otimização de áreas destinadas à multiplicação de mudas e também a escolha das melhores opções entre os materiais genéticos para a formação do canavial. Este trabalho baseia-se na hipótese de que, para viveiros de cana-de-açúcar, exista uma combinação mais adequada entre a lâmina de irrigação/intensidade do déficit hídrico e a posição da gema ao longo do colmo; desta forma, aumenta-se a produtividade de gemas de cana-de-açúcar, que serão utilizadas no plantio do sistema de mudas-pré-brotadas (MPB). O objetivo deste trabalho foi avaliar, no que se refere ao viveiro de mudas, o efeito de quatro lâminas de irrigação, quatro intensidades de déficit hídrico na fase de maturação, quatro posições ao longo do colmo para oito variedades de cana-de-açúcar irrigadas por gotejamento, assim como também a produtividade por área e os custos de produção de gemas viáveis de cana-de-açúcar. O experimento foi conduzido no município de Piracicaba - SP, no Departamento de Engenharia de Biossistemas da Escola Superior de Agricultura \"Luiz de Queiroz\" (ESALQ/USP), em ambiente protegido (estufa). O delineamento experimental adotado foi em blocos inteiramente aleatorizados, com três blocos completos. Os tratamentos foram distribuídos em esquema fatorial (4x4x4x8), totalizando-se assim 511 tratamentos e 1536 parcelas experimentais. Os tratamentos testados foram: lâmina de irrigação ao longo do ciclo, com quatro níveis (Lâmina); intensidade do déficit hídrico na fase final do ciclo para maturação da cana-de-açúcar, com quatro estratégias de restrição hídrica (Maturação); posição da gema ao longo do comprimento do colmo, com quatro posições (Posição); e variedade comercial de cana-de-açúcar, com oito variedades (Variedade). Considerando-se que o presente estudo foi desenvolvido através de irrigação por gotejamento de alta frequência sob irrigação plena e irrigação com déficit, pode-se concluir que: a) a lâmina de irrigação que repõe o total de água requerido com alta frequência (L100) promove um aumento médio de 42% no total de gemas viáveis produzidas por hectare, comparado com o fornecimento de metade da lâmina de irrigação requerida (L50); b) as gemas localizadas no segundo quarto do dossel da touceira tem maior capacidade de pegamento, bem como as próximas do ápice; c) a adoção de déficit hídrico na fase pré-colheita (estratégias de maturação) em condições de irrigação plena (L100) podem reduzir em média 11% o número de gemas viáveis por hectare; d) a produtividade da água para gemas de cana-de-açúcar (2,88 à 3,17 litros gema-1) não tem relação com a lâmina de irrigação ou a estratégia de maturação adotada, sendo influenciada somente pelo material genético utilizado (variedade); e) as estratégias de restrição do volume de água aplicado (L50, L75 e L125) oneram em até 51% os custos de produção para cada gema viável produzida, comparado à irrigação plena (L100). / Sugarcane crop is facing a difficult road ahead due the rising input and labor costs and the lack of innovative alternative technologies to boost productivity. Thus, it is essential not only increase the productivity of sugarcane, but also keep it in a sustainable way, had conserving limited resources throughout time. To accomplish this, there is a strong necessity to use alternative methods of production to boost sugarcane productivity on the principles of \'\'more with less\'\'. More than ever, the answer refers to proper planning, which includes among other practices, the formation of healthy nursery, with definable areas intended to multiplication of seedlings and the choice of the best options among the available materials for the formation of cane field. Sugarcane is cultivated using cuts of stalks or bud chips and this cultivation method is gradually becoming uneconomical due the cost of \"nurseries areas\" used for renew old areas, requiring more than 20 percent of the total production cost for renovation/new plantings. This work has the hypothesis that for sugarcane, there is a better combination of water depth / intensity of water stress and bud chip position along the stem, in order to maximize the fixation / development of buds. The objective is evaluate the effect of four irrigation levels, four water stress intensities in the maturation phase, four positions along the stem, for eight varieties of sugarcane submitted to drip irrigation, analyzing the related variables quality seedlings (productivity and cost of viable buds of sugarcane). The experiment was conducted in Piracicaba - SP, in the research area of the Department of Biosystems Engineering of the College of Agriculture \"Luiz de Queiroz\" (ESALQ / USP), in a protected environment (greenhouse). The experimental design was completely randomized blocks, with 3 complete blocks. The treatments were arranged in a factorial design (4x4x4x8), totaling 511 treatments and 1536 experimental plots. The treatments were: water depth during the cycle with 4 levels (Water depths); commercial variety of cane sugar, with 8 varieties (Variety), intensity of water deficit in the final phase of the maturation of sugarcane, 4 water restriction strategies (maturation); and bud chip position along the stem length, 4 position (position). Considering the conditions in which this study was developed: drip irrigation high frequency under full irrigation and irrigation deficit, it can be concluded that: a) The water depth that returned the total water required in high frequency (L100) promotes an average of 42% increase in total viable bud chips produced per hectare, compared with when it was supplied half of the required water depth (L50); b) Bud chips located in the second part of the canopy has a higher fixation capacity, as well as the buds located at the top; c) The adoption of water deficit in the pre-harvest phase (maturity strategies) in full irrigation conditions (L100) can reduce an average of 11% the number of viable buds per hectare; d) The water productivity of sugarcane bud chip (2,88 à 3,17 litros gema-1) has no relation to the water depth or adopted maturation strategy, being influenced by the used genetic material (variety); e) The restriction water strategies applied (L50, L75 and L125) can increase up to 51% of the costs for each viable bud produced compared to full irrigation (L100).
2

Season effects on the potential biomass and sucrose accumulation of some commercial cultivars of sugarcane.

Donaldson, Robin Albert. January 2009 (has links)
An experiment was conducted at Pongola (27°24´S, 31°25´E; 308m altitude) in South Africa to study the effects of season on growth and potential biomass and sucrose yields on nine commercial sugarcane cultivars. The treatments that were the focus in this study consisted of the cultivars NCo376, N25 and N26 ratooned in March, April, May, August and December. The crops were well fertilized and kept free of weeds and diseases. Irrigation applications were scheduled with a computer programme to keep the crops free of stress at all times. Shoot populations were counted regularly to study shoot density dynamics. Leaf appearance rates, sizes, numbers and senescence were measured to study the development of green leaf area. Green foliage, dead trash and stalk mass were measured at 4, 8, 10, 11 and 12 months in each of the starting times and also at 13 months in the March, April and May ratoon crops. The fibre, sucrose and non-sucrose content of stalks were determined on these harvesting occasions. Yields were calculated in terms of individual shoots and area (m‾²). The fraction of PAR intercepted by the developing canopies was measured until full canopy and daily intercepted solar radiation was interpolated for the entire crop. An automated meteorological station adjacent to the experiment site provided daily weather data. Shoot densities were described by thermal time, however, average peak shoot densities were lowest in the May ratoon (31.8 m‾²) and highest in the December ratoon (48.7 m‾²). Shoot senescence was most rapid in August and December ratoons. At the final harvest shoot densities were highest in the March, April and May ratoon (14.8 to 14.2 m‾²) crops. NCo376 (16.4 m‾²) and N25 (13.6 m‾²) had higher final shoot densities than N26 (10.5 m‾²). Leaf appearance rate was also well described by thermal time, however the first twelve leaves took longer to appear in crops started in December i.e. the first phyllochron was longer (109.5°C d) than in crops started at other times (80.4 to 94.5°C d). Leaves produced during the early stages of December and August ratoon crops were larger (e.g leaf number 13 of N26 was 443 to 378 cm²) than in other crops. April and May ratoon crops produced much smaller leaves (e.g leaf number 9 of N26 was 170 to 105 cm²). Leaf senescence was slower in April and May ratoon crops (0.36 to 0.46 leaves per 100°C d) than in March (0.51 to 0.59 leaves per 100°C d) or August and December ratoon crops (0.60 to 0.68 leaves per 100°C d). December ratoon crops produced very high green leaf area indexes (LAI) (>7.0) at the age of four months; all other crops had lower LAI (3.3 to 6.0) and most peaked later (8 to 11 months of age). The LAI of N25 peaked at the age of 8 months while NCo376 and N26 peaked when 10 to 11 months old. Seasonal fraction of solar radiation intercepted was high in the March ratoon crops (0.84) and declined to 0.63 in the May ratoon crops and was highest in the December ratoon crop (0.88). N26 intercepted lower fractions of PAR than NCo376 and N25, particularly in the May and August ratoon crops. Biomass accumulation, although initially slow, tended to be linear in the March, April and May ratoon crops in relation to intercepted radiation. In August and particularly in the December ratoons biomass accumulation was initially rapid, and RUEs were high (2.65 g MJ‾¹ at 114 days in the December ratoon crops). However, biomass accumulation slowed when these December ratoon crops experienced winter. Low growth rates after winter, as well as low shoot densities resulted in December ratoon crops having produced significantly lower above-ground biomass yields (4 886 g m‾² at the age of 12 months) than March, April and May ratoon crops (6 760 to 5 715 gm‾² at the age of 12 months). The December ratoon crops responded poorly to the better growing conditions in spring and second summer and accumulated little biomass after winter. N26 shoots grew rapidly during the first 6-8 months of the December ratoon crop and it yielded better than NCo376 and N25 at harvesting (biomass yields were 5.8 and 13.3% higher at the age of 12 months, respectively). April ratoons produced significantly higher biomass yields (6 760 g m‾²) than March, August and December ratoons. May ratoon crops produced the highest cane fresh mass yields (18 151 g m‾²) and April, May and August ratoons produced significantly higher sucrose yields than March and December ratoons. The highest sucrose yield was produced by the April ratoon crop of N26 (2 385 g m‾²). On average, across the five ratoon dates, NCo376, N25 and N26 produced similar sucrose yields (1 902 to 1 959 g m‾²). Foliage production was severely limited during winter while sucrose accumulation was less affected by the low temperatures, resulting in accumulation of sucrose in the top sections of the culm. Low temperatures slowed the development of canopies in March, April and May ratoon crops, but these crops were able to recover their growth rates and produced high biomass and sucrose yields at the age of 12 months. The December ratoons experienced low winter temperatures (<12°C) when they had already accumulated relatively high yields and became moribund during winter. They were unable to accumulate any significant amounts of biomass during final four months before the final harvest at the age of 12 months. NCo376, N25 and N26 all yielded poorly in the December ratoon crop. However, there are cultivars that appear to be less sensitive to the low winters and are able to yield relatively well when they are ratooned in December. Sucrose yields of March, April and May ratoons were increased substantially (10.6 to 22.7%) by harvesting at the age of 13 months rather than at the age of 12 months. The poor growth of December ratoon crops after winter is possibly due to the recently revealed feedback signaling by high sugar levels induced by low temperatures on photosynthesis. The incorporation of the effects of low temperature and the feedback signaling with the objective of better simulating yields of December ratoons is a proposed study at the South African Sugarcane Research Institute. Annual mean sucrose yields of NCo376, N25 and N26 crops were estimated to be 17% higher in March than in December ratoons. The suggested short term remedy therefore of the poor December yields is to shift milling seasons to include March and exclude December harvested crops in the northern irrigated regions. March crops grow vigorously during the months close to harvesting and therefore have lower levels of sucrose content which can be corrected with chemical ripeners. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
3

Considerações sobre o manejo de irrigação na produtividade e qualidade de gemas de cana-de-açúcar para viveiros de mudas-pré-brotadas (MPB) / Water management considerations on productivity and quality of sugarcane seedlings to the formation of bud chips nursery

Eusimio Felisbino Fraga Junior 29 April 2015 (has links)
O cultivo da cana-de-açúcar depara-se com a falta de tecnologias alternativas inovadoras para impulsionar sua produtividade diante dos crescentes custos de mão de obra e insumos, tornando-se essencial aumentar a produtividade da cana de forma sustentável. A cana-de-açúcar é comercialmente plantada, utilizando-se cortes de toletes ou gemas. Este método de cultivo está se tornando gradualmente antieconômico, devido ao elevado custo das \"áreas de viveiros\" usadas para a renovação de canaviais, que demandam mais de 20 por cento do custo total de produção para renovação/novos plantios. Dessa forma, necessita-se de métodos alternativos de plantio, que impulsionem a produtividade da cana-de-açúcar sobre princípios de um planejamento adequado; entre outras práticas, devem estar inclusas a formação de viveiros sadios, com otimização de áreas destinadas à multiplicação de mudas e também a escolha das melhores opções entre os materiais genéticos para a formação do canavial. Este trabalho baseia-se na hipótese de que, para viveiros de cana-de-açúcar, exista uma combinação mais adequada entre a lâmina de irrigação/intensidade do déficit hídrico e a posição da gema ao longo do colmo; desta forma, aumenta-se a produtividade de gemas de cana-de-açúcar, que serão utilizadas no plantio do sistema de mudas-pré-brotadas (MPB). O objetivo deste trabalho foi avaliar, no que se refere ao viveiro de mudas, o efeito de quatro lâminas de irrigação, quatro intensidades de déficit hídrico na fase de maturação, quatro posições ao longo do colmo para oito variedades de cana-de-açúcar irrigadas por gotejamento, assim como também a produtividade por área e os custos de produção de gemas viáveis de cana-de-açúcar. O experimento foi conduzido no município de Piracicaba - SP, no Departamento de Engenharia de Biossistemas da Escola Superior de Agricultura \"Luiz de Queiroz\" (ESALQ/USP), em ambiente protegido (estufa). O delineamento experimental adotado foi em blocos inteiramente aleatorizados, com três blocos completos. Os tratamentos foram distribuídos em esquema fatorial (4x4x4x8), totalizando-se assim 511 tratamentos e 1536 parcelas experimentais. Os tratamentos testados foram: lâmina de irrigação ao longo do ciclo, com quatro níveis (Lâmina); intensidade do déficit hídrico na fase final do ciclo para maturação da cana-de-açúcar, com quatro estratégias de restrição hídrica (Maturação); posição da gema ao longo do comprimento do colmo, com quatro posições (Posição); e variedade comercial de cana-de-açúcar, com oito variedades (Variedade). Considerando-se que o presente estudo foi desenvolvido através de irrigação por gotejamento de alta frequência sob irrigação plena e irrigação com déficit, pode-se concluir que: a) a lâmina de irrigação que repõe o total de água requerido com alta frequência (L100) promove um aumento médio de 42% no total de gemas viáveis produzidas por hectare, comparado com o fornecimento de metade da lâmina de irrigação requerida (L50); b) as gemas localizadas no segundo quarto do dossel da touceira tem maior capacidade de pegamento, bem como as próximas do ápice; c) a adoção de déficit hídrico na fase pré-colheita (estratégias de maturação) em condições de irrigação plena (L100) podem reduzir em média 11% o número de gemas viáveis por hectare; d) a produtividade da água para gemas de cana-de-açúcar (2,88 à 3,17 litros gema-1) não tem relação com a lâmina de irrigação ou a estratégia de maturação adotada, sendo influenciada somente pelo material genético utilizado (variedade); e) as estratégias de restrição do volume de água aplicado (L50, L75 e L125) oneram em até 51% os custos de produção para cada gema viável produzida, comparado à irrigação plena (L100). / Sugarcane crop is facing a difficult road ahead due the rising input and labor costs and the lack of innovative alternative technologies to boost productivity. Thus, it is essential not only increase the productivity of sugarcane, but also keep it in a sustainable way, had conserving limited resources throughout time. To accomplish this, there is a strong necessity to use alternative methods of production to boost sugarcane productivity on the principles of \'\'more with less\'\'. More than ever, the answer refers to proper planning, which includes among other practices, the formation of healthy nursery, with definable areas intended to multiplication of seedlings and the choice of the best options among the available materials for the formation of cane field. Sugarcane is cultivated using cuts of stalks or bud chips and this cultivation method is gradually becoming uneconomical due the cost of \"nurseries areas\" used for renew old areas, requiring more than 20 percent of the total production cost for renovation/new plantings. This work has the hypothesis that for sugarcane, there is a better combination of water depth / intensity of water stress and bud chip position along the stem, in order to maximize the fixation / development of buds. The objective is evaluate the effect of four irrigation levels, four water stress intensities in the maturation phase, four positions along the stem, for eight varieties of sugarcane submitted to drip irrigation, analyzing the related variables quality seedlings (productivity and cost of viable buds of sugarcane). The experiment was conducted in Piracicaba - SP, in the research area of the Department of Biosystems Engineering of the College of Agriculture \"Luiz de Queiroz\" (ESALQ / USP), in a protected environment (greenhouse). The experimental design was completely randomized blocks, with 3 complete blocks. The treatments were arranged in a factorial design (4x4x4x8), totaling 511 treatments and 1536 experimental plots. The treatments were: water depth during the cycle with 4 levels (Water depths); commercial variety of cane sugar, with 8 varieties (Variety), intensity of water deficit in the final phase of the maturation of sugarcane, 4 water restriction strategies (maturation); and bud chip position along the stem length, 4 position (position). Considering the conditions in which this study was developed: drip irrigation high frequency under full irrigation and irrigation deficit, it can be concluded that: a) The water depth that returned the total water required in high frequency (L100) promotes an average of 42% increase in total viable bud chips produced per hectare, compared with when it was supplied half of the required water depth (L50); b) Bud chips located in the second part of the canopy has a higher fixation capacity, as well as the buds located at the top; c) The adoption of water deficit in the pre-harvest phase (maturity strategies) in full irrigation conditions (L100) can reduce an average of 11% the number of viable buds per hectare; d) The water productivity of sugarcane bud chip (2,88 à 3,17 litros gema-1) has no relation to the water depth or adopted maturation strategy, being influenced by the used genetic material (variety); e) The restriction water strategies applied (L50, L75 and L125) can increase up to 51% of the costs for each viable bud produced compared to full irrigation (L100).

Page generated in 0.0815 seconds