Spelling suggestions: "subject:"suited automatique"" "subject:"suited automatiquement""
1 |
Quelques contributions à l'étude des séries formelles à coefficients dans un corps finiFiricel, Alina 08 December 2010 (has links) (PDF)
Cette thèse se situe à l'interface de trois grands domaines : la combinatoire des mots, la théorie des automates et la théorie des nombres. Plus précisément, nous montrons comment des outils provenant de la combinatoire des mots et de la théorie des automates interviennent dans l'étude de problèmes arithmétiques concernant les séries formelles à coefficients dans un corps fini.Le point de départ de cette thèse est un célèbre théorème de Christol qui caractérise les séries de Laurent algébriques sur le corps F_q(T), l'entier q désignant une puissance d'un nombre premier p, en termes d'automates finis et dont l'énoncé est : " Une série de Laurent à coefficients dans le corps fini F_q est algébrique si et seulement si la suite de ses coefficients est engendrée par un p-automate fini ". Ce résultat, qui révèle dans un certain sens la simplicité de ces séries de Laurent, a donné naissance à des travaux importants parmi lesquels de nombreuses applications et généralisations.L'objet principal de cette thèse est, dans un premier temps, d'exploiter la simplicité de séries de Laurent algébriques à coefficients dans un corps fini afin d'obtenir des résultats diophantiens, puis d'essayer d'étendre cette étude à des fonctions transcendantes arithmétiquement intéressantes. Nous nous concentrons tout d'abord sur une classe de séries de Laurent algébriques particulières qui généralisent la fameuse cubique de Baum et Sweet. Le résultat principal obtenu pour ces dernières est une description explicite de leur développement en fraction continue, généralisant ainsi certains travaux de Mills et Robbins. Rappelons que le développement en fraction continue permet généralement d'obtenir des informations très précises sur l'approximation rationnelle ; les meilleures approximations étant obtenues directement à partir de la suite des quotients partiels. Malheureusement, il est souvent très difficile d'obtenir le développement en fraction continue d'une série de Laurent algébrique, que celle-ci soit donné par une équation algébrique ou par son développement en série de Laurent. La deuxième étude que nous présentons dans cette thèse fournit une information diophantienne à priori moins précise que la description du développement en fraction continue, mais qui a le mérite de concerner toutes les séries de Laurent algébriques (à coefficients dans un corps fini). L'idée principale est d'utiliser l'automaticité de la suite des coefficients de ces séries de Laurent afin d'obtenir une borne générale pour leur exposant d'irrationalité. Malgré la généralité de ce résultat, la borne obtenue n'est pas toujours satisfaisante. Dans certains cas, elle peut s'avérer plus mauvaise que celle provenant de l'inégalité de Mahler. Cependant, dans de nombreuses situations, il est possible d'utiliser notre approche pour fournir, au mieux, la valeur exacte de l'exposant d'irrationalité, sinon des encadrements très précis de ce dernier.Dans un dernier travail nous nous plaçons dans un cadre plus général que celui des séries de Laurent algébriques, à savoir celui des séries de Laurent dont la suite des coefficients a une " basse complexité ". Nous montrons que cet ensemble englobe quelques fonctions remarquables, comme les séries algébriques et l'inverse de l'analogue du nombre \pi dans le module de Carlitz. Il possède, par ailleurs, des propriétés de stabilité intéressantes : entre autres, il s'agit d'un espace vectoriel sur le corps des fractions rationnelles à coefficients dans un corps fini (ce qui, d'un point de vue arithmétique, fournit un critère d'indépendance linéaire), il est de plus laissé invariant par diverses opérations classiques comme le produit de Hadamard
|
2 |
Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini / Some contributions at the study of Laurent series with coefficients in a finite fieldFiricel, Alina 08 December 2010 (has links)
Cette thèse se situe à l'interface de trois grands domaines : la combinatoire des mots, la théorie des automates et la théorie des nombres. Plus précisément, nous montrons comment des outils provenant de la combinatoire des mots et de la théorie des automates interviennent dans l'étude de problèmes arithmétiques concernant les séries formelles à coefficients dans un corps fini.Le point de départ de cette thèse est un célèbre théorème de Christol qui caractérise les séries de Laurent algébriques sur le corps F_q(T), l'entier q désignant une puissance d'un nombre premier p, en termes d'automates finis et dont l'énoncé est : « Une série de Laurent à coefficients dans le corps fini F_q est algébrique si et seulement si la suite de ses coefficients est engendrée par un p-automate fini ». Ce résultat, qui révèle dans un certain sens la simplicité de ces séries de Laurent, a donné naissance à des travaux importants parmi lesquels de nombreuses applications et généralisations.L'objet principal de cette thèse est, dans un premier temps, d'exploiter la simplicité de séries de Laurent algébriques à coefficients dans un corps fini afin d'obtenir des résultats diophantiens, puis d'essayer d'étendre cette étude à des fonctions transcendantes arithmétiquement intéressantes. Nous nous concentrons tout d'abord sur une classe de séries de Laurent algébriques particulières qui généralisent la fameuse cubique de Baum et Sweet. Le résultat principal obtenu pour ces dernières est une description explicite de leur développement en fraction continue, généralisant ainsi certains travaux de Mills et Robbins. Rappelons que le développement en fraction continue permet généralement d'obtenir des informations très précises sur l'approximation rationnelle ; les meilleures approximations étant obtenues directement à partir de la suite des quotients partiels. Malheureusement, il est souvent très difficile d'obtenir le développement en fraction continue d'une série de Laurent algébrique, que celle-ci soit donné par une équation algébrique ou par son développement en série de Laurent. La deuxième étude que nous présentons dans cette thèse fournit une information diophantienne à priori moins précise que la description du développement en fraction continue, mais qui a le mérite de concerner toutes les séries de Laurent algébriques (à coefficients dans un corps fini). L'idée principale est d'utiliser l'automaticité de la suite des coefficients de ces séries de Laurent afin d'obtenir une borne générale pour leur exposant d'irrationalité. Malgré la généralité de ce résultat, la borne obtenue n'est pas toujours satisfaisante. Dans certains cas, elle peut s'avérer plus mauvaise que celle provenant de l'inégalité de Mahler. Cependant, dans de nombreuses situations, il est possible d'utiliser notre approche pour fournir, au mieux, la valeur exacte de l'exposant d'irrationalité, sinon des encadrements très précis de ce dernier.Dans un dernier travail nous nous plaçons dans un cadre plus général que celui des séries de Laurent algébriques, à savoir celui des séries de Laurent dont la suite des coefficients a une « basse complexité ». Nous montrons que cet ensemble englobe quelques fonctions remarquables, comme les séries algébriques et l'inverse de l'analogue du nombre \pi dans le module de Carlitz. Il possède, par ailleurs, des propriétés de stabilité intéressantes : entre autres, il s'agit d'un espace vectoriel sur le corps des fractions rationnelles à coefficients dans un corps fini (ce qui, d'un point de vue arithmétique, fournit un critère d'indépendance linéaire), il est de plus laissé invariant par diverses opérations classiques comme le produit de Hadamard / This thesis looks at the interplay of three important domains: combinatorics on words, theory of finite-state automata and number theory. More precisely, we show how tools coming from combinatorics on words and theory of finite-state automata intervene in the study of arithmetical problems concerning the Laurent series with coefficients in a finite field.The starting point of this thesis is a famous theorem of Christol which characterizes algebraic Laurent series over the field F_q(T), q being a power of the prime number p, in terms of finite-state automata and whose statement is the following : “A Laurent series with coefficients in a finite field F_q is algebraic over F_q(T) if and only if the sequence of its coefficients is p-automatic”.This result, which reveals, somehow, the simplicity of these Laurent series, has given rise to important works including numerous applications and generalizations. The theory of finite-state automata and the combinatorics on words naturally occur in number theory and, sometimes, prove themselves to be indispensable in establishing certain important results in this domain.The main purpose of this thesis is, foremost, to exploit the simplicity of the algebraic Laurent series with coefficients in a finite field in order to obtain some Diophantine results, then to try to extend this study to some interesting transcendental functions. First, we focus on a particular set of algebraic Laurent series that generalize the famous cubic introduced by Baum and Sweet. The main result we obtain concerning these Laurent series gives the explicit description of its continued fraction expansion, generalizing therefore some articles of Mills and Robbins.Unfortunately, it is often very difficult to find the continued fraction representation of a Laurent series, whether it is given by an algebraic equation or by its Laurent series expansion. The second study that we present in this thesis provides a Diophantine information which, although a priori less complete than the continued fraction expansion, has the advantage to characterize any algebraic Laurent series. The main idea is to use some the automaticity of the sequence of coefficients of these Laurent series in order to obtain a general bound for their irrationality exponent. In the last part of this thesis we focus on a more general class of Laurent series, namely the one of Laurent series of “low” complexity. We prove that this set includes some interesting functions, as for example the algebraic series or the inverse of the analogue of the real number \pi. We also show that this set satisfy some nice closure properties : in particular, it is a vector space over the field over F_q(T).
|
3 |
Suites digitales et suites k-régulièresCateland, Emmanuel 03 June 1992 (has links) (PDF)
Nous étudions les fonctions sommatoires des suites digitales. Ces suites sont obtenues en "promenant une fenêtre" sur le développement des entiers en base q, et sont une sous- classe des suites q-régulières. Le comportement asymptotique des fonctions sommatoires est précisé, avec la mise en évidence d'une oscillation "fractale", qui fait intervenir une fonction continue nulle part dérivable. Dans la dernière partie nous nous intéressons à des suites d'entiers à la Cantor, qui s'écrivent dans une base donnée en évitant certains chiffres.
|
4 |
Exponential sum estimates and Fourier analytic methods for digitally based dynamical systems / Estimation de sommes d'exponentielles et méthodes d'analyse de Fourier pour les systèmes dynamiques basés sur les développements digitauxMüllner, Clemens 21 February 2017 (has links)
La présente thèse a été fortement influencée par deux conjectures, l'une de Gelfond et l'autre de Sarnak.En 1968, Gelfond a prouvé que la somme des chiffres modulo m est asymtotiquement équirépartie dans des progressions arithmétiques, et il a formulé trois problèmes nouveaux.Le deuxième et le troisième problèmes traitent des sommes des chiffres pour les nombres premiers et les suites polynomiales.En ce qui concerne les nombres premiers et les carrés, Mauduit et Rivat ont résolu ces problèmes en 2010 et 2009, respectivement.Drmota, Mauduit et Rivat ont réussi généraliser le résultat concernant la suite des sommes des chiffres des carrés.Ils ont démontré que chaque bloc apparaît asymptotiquement avec la même fréquence.Selon la conjecture de Sarnak, il n'y a pas de corrélation entre la fonction de Möbius et des fonctions simples.La présente thèse traite de la répartition de suites automatiques le long de sous-suites particulières ainsi que d'autres propriétés de suites automatiques.Selon l'un des résultats principaux du présent travail, toutes les suites automatiques vérifient la conjecture de Sarnak.Moyennant une approche légèrement modifiée, nous traitons également la répartition de suites automatiques le long de la suite des nombres premiers.Dans le cadre du traitement de suites automatiques générales, nous avons mis au point une nouvelle structure destinée aux automates finisdéterministes ouvrant une vision nouvelle pour les automates et/ou les suites automatiques.Nous étendons les résultat de Drmota, Mauduit et Rivat concernant les suites digitales.Cette approche peut également être considérée comme une généralisation du troisième problème de Gelfond. / The present dissertation was inspired by two conjectures, one by Gelfond and one of Sarnak.In 1968 Gelfond proved that the sum of digits modulo m is asymptotically equally distributed along arithmetic progressions.Furthermore, he stated three problems which are nowadays called Gelfond problems.The second and third questions are concerned with the sum of digits of prime numbers and polynomial subsequences.Mauduit and Rivat were able to solve these problems for primes and squares in 2010 and 2009 respectively.Drmota, Mauduit and Rivat generalized the result concerning the sequence of the sum of digits of squares.They showed that each block appears asymptotically equally frequently.Sarnak conjectured in 2010 that the Mobius function does not correlate with deterministic functions.This dissertation deals with the distribution of automatic sequences along special subsequences and other properties of automatic sequences.A main result of this thesis is that all automatic sequences satisfy the Sarnak conjecture.Through a slightly modified approach, we also deal with the distribution of automatic sequences along the subsequence of primes.In the course of the treatment of general automatic sequences, a new structure for deterministic finite automata is developed,which allows a new view for automata or automatic sequences.We extend the result of Drmota, Mauduit and Rivat to digital sequences.This is also a generalization of the third Gelfond problem.
|
5 |
Quelques Résultats Arithmétiques Impliquant des Suites Engendrées par Automates / Several arithmetic results concerning automatic sequencesHu, Yining 28 November 2016 (has links)
Cette thèse est composée d'une partie sur la conjecture des familles stables par unions et de quatre autres chapitres consacrés aux sujets liés aux suites automatiques. Dans la première partie, on donne une condition suffisante pour qu'une version affaiblie de la conjecture soit vraie. On donne aussi un majorant de la fréquence maximale minimale dans une famille de taille $n$. Dans Chapitre 3 on démontre que la formule d'extraction des coefficients des séries algébriques connue pour les corps à caractéristique $0$ est une conséquence d'un théorème de Furstenberg qui permet d'écrire certaines séries algébriques comme les diagonales des fractions rationnelles à deux variables. Comme ce théorème est valide pour tous les corps, la formule l'est aussi. Dans Chapitre 4 on donne une généralisation des résultats de J.-P. Allouche et J. Shallit concernant certains produits infinis et les fonctions qui comptent le nombre d'occurrences d'un facteur dans l'expansion en base $B$ de $n$. Dans Chapitre 5 on donne une construction explicite d'un mot infini avec complexité en facteur de $\Theta(n^t)$ avec la valuation $p$-adique. Dans Chapitre 6 on donne une nouvelle démonstration de la transcendance de la série formelle $L(1,\chi_s)/\Pi$, où $L$ est un analogue des fonctions $L$ de Dirichlet en caractéristique finie défini par D. Goss et $\Pi$ l'analogue de $\pi$ défini par L. Carlitz. / This thesis comprises one part concerning the union-closed sets conjecture and four other chapters dedicated to subjects related to automatic sequences. In the first part, we give a sufficient condition for a weaker version of the conjecture ($\varepsilon$-union closed sets conjecture) to hold. We also give an upper bound of the minimal maximal frequency for a family of size $n$. In Chapter 3 we prove that the coefficient extraction formula for algebraic series known for fields of characteristic $0$ is a consequence of a theorem of Furstenberg that says certains algebraic series can be written as the diagonals of a rational fractions in two variables. As the theorem is true for all fields, so is the formula. In Chapter 4 we give a generalization of the result of J.-P. Allouche and J. Shallit concerning certain infinite products and block-counting functions. In Chapter 5 we give an explicit construction based on $p$-adic valuation of an infinite word with subword complexity $\Theta(n^t)$. In Chapter 6 we give a new proof of the transcendence of the power series $L(1,\chi_s)/\Pi$, where $L$ is an analogue in positive characteristics of Dirichlet $L$ functions defined by D. Goss and $\Pi$ the analogue of $\pi$ defined by L. Carlitz.
|
6 |
Abstract Numeration Systems: Recognizability, Decidability, Multidimensional S-Automatic Words, and Real NumbersCharlier, Emilie 07 December 2009 (has links)
In this doctoral dissertation, we studied and solved several questions regarding positional and abstract numeration systems. Each particular problem is the focus of a chapter. The first problem concerns the study of the preservation of recognizability under multiplication by a constant in abstract numeration systems built on polynomial regular languages. We obtained several results generalizing those from P. Lecomte and M. Rigo. The second problem we considered is a decidability problem, which was already studied, most notably, by J. Honkala and A. Muchnik. For our part, we studied this problem for two new cases: the linear positional numeration systems and the abstract numeration systems. Next, we focused on the extension to the multidimensional setting of a result of A. Maes and M.~Rigo regarding S-automatic infinite words. We obtained a characterization of multidimensional S-automatic words in terms of multidimensional (non-necessarily uniform) morphisms. This result can be viewed as the analogous of O. Salon's extension of a theorem of A. Cobham. Finally, generalizing results of P. Lecomte and M. Rigo, we proposed a formalism to represent real numbers in the general framework of abstract numeration systems built on languages that are not necessarily regular. This formalism encompasses in particular the rational base numeration systems, which have been recently introduced by S. Akiyama, Ch. Frougny, and J. Sakarovitch. Finally, we ended with a list of open questions in the continuation of this work./Dans cette dissertation, nous étudions et résolvons plusieurs questions autour des systèmes de numération abstraits. Chaque problème étudié fait l'objet d'un chapitre. Le premier concerne l'étude de la conservation de la reconnaissabilité par la multiplication par une constante dans des systèmes de numération abstraits construits sur des langages réguliers polynomiaux. Nous avons obtenus plusieurs résultats intéressants généralisant ceux de P. Lecomte et M. Rigo. Le deuxième problème auquel je me suis intéressée est un problème de décidabilité déjà étudié notamment par J. Honkala et A. Muchnik et ici décliné en deux nouvelles versions : les systèmes de numération de position linéaires et les systèmes de numération abstraits. Ensuite, nous nous penchons sur l'extension au cas multidimensionnel d'un résultat d'A. Maes et de M. Rigo à propos des mots infinis S-automatiques. Nous avons obtenu une caractérisation des mots S-automatiques multidimensionnels en termes de morphismes multidimensionnels (non nécessairement uniformes). Ce résultat peut être vu comme un analogue de l'extension obtenue par O. Salon d'un théorème de A. Cobham. Finalement, nous proposons un formalisme de la représentation des nombres réels dans le cadre général des systèmes de numération abstraits basés sur des langages qui ne sont pas nécessairement réguliers. Ce formalisme englobe notamment le cas des numérations en bases rationnelles introduits récemment par S. Akiyama, Ch. Frougny et J. Sakarovitch. Nous terminons par une liste de questions ouvertes dans la continuité de ce travail.
|
Page generated in 0.0877 seconds