• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epoxy/Single Walled Carbon Nanotube Nanocomposite Thin Films for Composites Reinforcement

Warren, Graham 2009 May 1900 (has links)
This work is mainly focused upon the preparation, processing and evaluation of mechanical and material properties of epoxy/single walled carbon nanotube (SWCNT) nanocomposite thin films. B-staged epoxy/SWCNT nanocomposite thin films at 50% of cure have been prepared for improving conductivity and mechanical performance of laminated composites. The SWCNTs were functionalized by oxidation and subsequent grafting using polyamidoamine generation 0 dendrimers (PAMAM-G0). The epoxy nanocomposites containing SWCNTs were successfully cast into thin films by manipulating degree of cure and viscosity of epoxy. The first section of this study focuses on the covalent oxidation and functionalization of single-walled carbon nanotubes (SWCNTs), which is necessary in order to obtain the full benefit of the SWCNTs inherent properties for reinforcement. In the second section of this work the preparation of B-staged epoxy/SWCNT nanocomposite thin films is discussed and what the purposes of thin films are. Additionally, the morphology as well as mechanical properties is evaluated by numerous means to obtain a clear picture as to the mechanisms of the epoxy/SWCNT nanocomposites. Furthermore, the effects of using sulfanilamide as a more attractive surface modifier for improved dispersion and adhesion and the effects of nylon particles for improved toughening on epoxy/SWCNT nanocomposites are discussed which displays improvements in numerous areas. Finally, based on these findings and previous studies, the B-staged epoxy/SWCNT nanocomposite thin films can be seamlessly integrated into laminated composite systems upon heating, and can serve as interleaves for improving conductivity and mechanical strengths of laminated fiber composite systems.
2

Human Carbonic Anhydrase Ii; Preparation, Metal-Substitution, Activity, and Inhibition

Wilson, David L 14 August 2015 (has links)
This report details the activities and inhibition of metal-substituted human carbonic anhydrase II (M-HCA-II). The traditional activities (hydrolysis of CO2 and para-nitrophenol acetate) in addition to new activities (oxidation of 2-aminophenol, disproportionation of H2O2, and disproportionation of superoxide) were investigated. Values reported for the relative hydrolytic activities of M-HCA-IIs are reported here for the first time, ranging from 47.5 % (plus or minus 0.6) to 86 % (plus or minus 4) for the hydrolysis of CO2 and from 0.299 % (plus or minus 0.012) to 4.72 % (plus or minus 0.015) for the hydrolysis of para-nitrophenol acetate. With respect to new activities, only the oxidation of 2-aminophenol was observed. Turnover was observed for Fe-HCA-II (kcat/KM = 3.6 plus or minus 1.3 mM-1 s-1) and Cu-HCA-II (kcat/KM = 8 plus or minus 2 mM-1 s-1). Inhibition of Zn-, (di-substituted) Cu2-, and Cu/Zn-HCA-II hydrolysis of CO2 and para-nitrophenol acetate by sulfanilamide, coumarin, and ortho-coumaric acid were investigated. Sulfanilamide was shown to inhibit: Zn-HCA-II, Cu2-HCA-II, and Cu/Zn-HCA-II - (with CO2) KM = 8.9 plus or minus 1.1 microM, 11 plus or minus 2 microM, 8.8 plus or minus 1.4 microM and (with p-nitrophenyl acetate) KM = 8.4 plus or minus 1.0 microM, (none), 8.4 plus or minus 1.4 microM, respectively. No inhibition was observed for coumarin or ortho-coumaric acid or its derivatives for any CAs studied.

Page generated in 0.0311 seconds