• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biowaste as energy source for biological sulphate removal

Greben-Wiersema, Harmanna Alida 28 January 2008 (has links)
Please read the abstract in the section 00front of this document / Thesis (PhD(Water Resource Management))--University of Pretoria, 2008. / Microbiology and Plant Pathology / PhD / unrestricted
2

Synthetic domestic wastewater sludge as electron donor in the reduction of sulphate and treatment of acid mine drainage

Van den Berg, Francis 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Acid mine drainage (AMD) is wastewater generated by mine and industrial activity with typically high heavy metal and sulphur content potentially resulting in toxic wastewater upon exposure to dissolved oxygen, water and micro-organisms. Due to the hazardous consequences of untreated AMD, treatment methods such as semi-passive biotic treatments, including constructive wetlands and microbial bioreactors were developed. Microbial bioreactors rely on suitable carbon sources such as ethanol, grasses and manure and the creation of anaerobic conditions for the reduction of sulphate, chemical oxidizable organic matter (COD) and to neutralise pH. Domestic wastewater sludge has also been identified as an economical and readily available carbon source that allows the treatment of both AMD and domestic wastewater. A synthetic medium simulating the COD and the biological degradable organic matter (BOD) of domestic wastewater sludge was formulated to exclude variations in the evaluation of domestic wastewater sludge as carbon source in the treatment of AMD. Firstly the BOD and COD of anaerobic domestic wastewater sludge was determined and used as parameters in the formulation of the synthetic medium. A ratio of 1:1 AMD: synthetic domestic wastewater sludge (SDWWS) was the optimum ratio in terms of sulphate and COD removal. Secondly, medical drip bags were used as anaerobic bioreactors to determine the microbial diversity in AMD treated with SDWWS using different variables. Data analyses from next generation sequencing showed that Chlorobium spp. dominated the 90 d pioneer trials at relative percentages of 68 % and 76 %. Transmission electron microscopy (TEM) images and the bright green colour of the liquid contents confirmed the data analyses. Sulphates and COD were removed at > 98 % and > 85 %, respectively. A shorter incubation time was investigated in the 30 d pioneer trial. Chlorobium spp. was dominant, followed by Magnetospirillum spp. and Ornithobacterium spp. The liquid content changed to a dark brown colour. COD and sulphate concentrations were reduced by 60.8 % and 96 %, respectively, within 26 d, after which a plateau was reached. The effect of an established biofilm in the bioreactors showed that Chlorobium spp. also dominated approximately 62 %, in comparison to the 36 % in the 30 d pioneer trial. A sulphate and COD reduction of 96 % and 58 %, respectively, was obtained within 26 d and the liquid content was the same colour as in the 30 d pioneer trial. It is possible that brown Green sulphur bacteria were present. Therefore, although Chlorobium spp. was present at a higher percentage as in the 30 d pioneer trial, the removal of COD and sulphate was similar. During the 30 d trials a white precipitant formed at the top of the bioreactors, consisting primarily of sulphate and carbon that was also indicative of the presence of Chlorobium spp. Incubation at reduced temperature reduced sulphates by only 10 % and COD by 12 % after 17 d, followed by a plateau. Ornithobacterium spp. dominated in the first trial and Magnetospirillum spp. in the second trial. / AFRIKAANSE OPSOMMING: Suur mynwater (SMW) is afvalwater wat deur die myn- en industriële bedryf gegenereer word en bevat kenmerklik hoë konsentrasies swaar metale en swawel wat potensieel in toksiese afvalwater omskep kan word indien blootgestel aan opgelosde suurstof, water en mikro-organismes. Die skadelike gevolge wat blootstelling aan onbehandelde SMW mag hê, het gelei tot semi-passiewe behandelinge wat vleilande en mikrobiese bioreaktors insluit. Mikrobiese bioreaktore maak staat op n geskikte koolstofbron soos etanol, grasse en bemesting en die skep van ‘n anaerobiese omgewing vir die verwydering van sulfate en chemies oksideerbare organiese material (CSB), asook die neutralisering van pH. Huishoudelike afvalwaterslyk is ook uitgewys as ‘n ekonomies geskikte en algemeen beskikbare koolstofbron wat die behandeling van beide SMW en huishoudelike afvalwater toelaat. ‘n Sintetiese medium wat die CSB en biologies afbreekbare organiese materiaal (BSB) van huishoudelike afvalwater slyk naboots is geformuleer om die variasies in die evaluasie van huishoudelike afvalwater slyk as koolstofbron vir die behandeling van SMW, uit te sluit. Eerstens is die BSB en die CSB van huishoudelike afvalwater slyk bepaal en gebruik as n maatstaf vir die formulering van die sintetiese medium. ‘n Verhouding van 1:1 sintetiese huishoudelike afvalwater slyk (SDWWS) en SMW is optimaal ratio i.t.v. die verwydering van sulfate en CSB. Tweedens is mediese dripsakkies as anaerobiese bioreaktore gebruik om die mikrobiese diversiteit in SMW, wat met SDWWS behandel is, te bepaal deur verskeie veranderlikes te gebruik. Tweede generasie DNA-volgorde bepalingstegnieke is gebruik en data analises het gewys dat Chlorobium spp. die 90 d pionier toetslopie domineer met relatiewe persentasies van 68 % en 76 %. Transmissie elektron mikroskopie fotos en die helder groen kleur van die dripsakkies se vloeistof inhoud het die data analises bevestig. Die sulfate en CSB inhoud is onderskeidelik met > 98 % en > 85 % verminder. ‘n Korter behandelingstydperk is ondersoek met n 30 d pionier toetslopie. Chlorobium spp. was dominant, gevolg deur Magnetospirillum spp. en Ornithobacterium spp. Die vloeistof inhoud het na ‘n donker bruin kleur verander. Die CSB en sulfaat konsentrasies is met 60.8 % en 96 % onderskeidelik verminder na 26 dae waarna ‘n plato bereik is. Die effek van ‘n reeds bestaande biofilm in die bioreaktore het gewys dat Chlorobium spp. ook gedomineer het teen ‘n relatiewe persentasie van 62 % in vergelyking met die 36 % in die 30 d pionier toetslopie. ‘n Vermindering in sulfate en CSB van 96 % en 58 % is onderskeidelik is bereik binne 26 d en die vloeistofinhoud was dieselfde kleur as die bioreaktore in die 30 d pionier toetslopie. Dit is moontlik dat die bruin Groen swawel bakterieë teenwoordig was. Daarom, ondanks ‘n groter teenwoordigheid van die Chlorobium spp. teen ‘n relatiewe persentasie in vergelying met die 30 d pionier toetslopie, was die verwydering van CSB en sulfate soortgelyk. Tydens die 30 d toetslopies het ‘n wit neerslag aan die bokant van die bioreaktore gevorm wat hoofsaaklik uit sulfaat en koolstof bestaan het wat ook ‘n aanduiding van die teenwoordigheid van Chlorobium spp. is. ‘n Toetslopie wat by laer temperature uitgevoer is kon die sulfate en CSB met slegs 10 % en 12 % onderskeidelik verminder nadat ‘n plato na 17 d bereik is. Ornithobacterium spp. het die eerste toetslopie gedomineer waar Magnetospirillum spp. die tweede toetslopie gedomineer het.
3

Sulphate Removal By Nanofiltration From Water

Karabacak, Asli 01 December 2010 (has links) (PDF)
ABSTRACT SULPHATE REMOVAL BY NANOFILTRATION FROM WATER Karabacak, Asli M.Sc., Department of Environmental Engineering Supervisor: Prof. Dr. &Uuml / lk&uuml / Yetis Co-advisor: Prof. Dr. Mehmet Kitis December 2010, 152 pages Excess sulphate in drinking water poses a problem due to adverse effects on human health and also due to aesthetic reasons. This study examines the nanofiltration (NF) of sulphate in surface water using a laboratory cross-flow device in total recycle mode. In the study, three NF membranes, namely DK-NF, DL-NF and NF-270, are used. The influence of the main operating conditions (transmembrane pressure, tangential velocity and membrane type) on the steady-state permeates fluxes and the retention of sulphate are evaluated. Kizilirmak River water is used as the raw water sample. During the experimental studies, the performance of NF is assessed in terms of the parameters of UVA254, sulphate, TOC and conductivity of the feed and permeates waters. Results indicated that NF could reduce sulphate levels in the surface water to a level below the guideline values, with a removal efficiency of around 98% with all three membranes. DK-NF and NF-270 membranes showed fouling when the surface water was fed directly to the system without any pre-treatment. MF was found to be an effective pretreatment option for the prevention of the membrane fouling, but no further removal of sulphate was achieved. Parametric study was also conducted. No change in flux values and in the removal of sulphate was observed when the crossflow velocity was lowered. The flux values were decreased as the transmembrane pressure was lowered / however there were not any decrease in the sulphate removal efficiency.
4

Sulphate removal from industrial effluents through barium sulphate precipitation / Swanepoel H.

Swanepoel, Hulde. January 2011 (has links)
The pollution of South Africa’s water resources puts a strain on an already stressed natural resource. One of the main pollution sources is industrial effluents such as acid mine drainage (AMD) and other mining effluents. These effluents usually contain high levels of acidity, heavy metals and sulphate. A popular method to treat these effluents before they are released into the environment is lime neutralisation. Although this method is very effective to raise the pH of the effluent as well as to precipitate the heavy metals, it can only partially remove the sulphate. Further treatment is required to reduce the sulphate level further to render the water suitable for discharge into the environment. A number of sulphate removal methods are available and used in industry. These methods can be divided into physical (membrane filtration, adsorption/ion exchange), chemical (chemical precipitation) and biological sulphate reduction processes. A literature study was conducted in order to compare these different methods. The ABC (Alkali – Barium – Calcium) Desalination process uses barium carbonate to lower the final sulphate concentration to an acceptable level. Not only can the sulphate removal be controlled due to the low solubility of barium sulphate, but it can also produce potable water and allows valuable by–products such as sulphur to be recovered from the sludge. The toxic barium is recycled within the process and should therefore not cause additional problems. In this study the sulphate removal process, using barium carbonate as reactant, was investigated. Several parameters have been investigated and studied by other authors. These parameters include different barium salts, different barium carbonate types, reaction kinetics, co–precipitation of calcium carbonate, barium–to–sulphate molar ratios, the effect of temperature and pH. The sulphate removal process was tested and verified on three different industrial effluents. The results and conclusions from these publications were used to guide the experimental work. A number of parameters were examined under laboratory conditions in order to find the optimum conditions for the precipitation reaction to take place. This included mixing rotational speed, barium–to–sulphate molar ratio, initial sulphate concentration, the effect of temperature and the influence of different barium carbonate particle structures. It was found that the reaction temperature and the particle structure of barium carbonate influenced the process significantly. The mixing rotational speed, barium–to–sulphate dosing ratios and the initial sulphate concentration influenced the removal process, but not to such a great extent as the two previously mentioned parameters. The results of these experiments were then tested and verified on AMD from a coal mine. The results from the literature analysis were compared to the experiments conducted in the laboratory. It was found that the results reported in the literature and the laboratory results correlated well with each other. Though, in order to optimise this sulphate removal process, one has to understand the sulphate precipitation reaction. Therefore it is recommended that a detailed reaction kinetic study should be conducted to establish the driving force of the kinetics of the precipitation reactions. In order to upgrade this process to pilot–scale and then to a full–scale plant, continuous reactor configurations should also be investigated. The sulphate removal stage in the ABC Desalination Process is the final treatment step. The effluent was measured against the SANS Class II potable water standard and was found that the final water met all the criteria and could be safely discharged into the environment. / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2012.
5

Sulphate removal from industrial effluents through barium sulphate precipitation / Swanepoel H.

Swanepoel, Hulde. January 2011 (has links)
The pollution of South Africa’s water resources puts a strain on an already stressed natural resource. One of the main pollution sources is industrial effluents such as acid mine drainage (AMD) and other mining effluents. These effluents usually contain high levels of acidity, heavy metals and sulphate. A popular method to treat these effluents before they are released into the environment is lime neutralisation. Although this method is very effective to raise the pH of the effluent as well as to precipitate the heavy metals, it can only partially remove the sulphate. Further treatment is required to reduce the sulphate level further to render the water suitable for discharge into the environment. A number of sulphate removal methods are available and used in industry. These methods can be divided into physical (membrane filtration, adsorption/ion exchange), chemical (chemical precipitation) and biological sulphate reduction processes. A literature study was conducted in order to compare these different methods. The ABC (Alkali – Barium – Calcium) Desalination process uses barium carbonate to lower the final sulphate concentration to an acceptable level. Not only can the sulphate removal be controlled due to the low solubility of barium sulphate, but it can also produce potable water and allows valuable by–products such as sulphur to be recovered from the sludge. The toxic barium is recycled within the process and should therefore not cause additional problems. In this study the sulphate removal process, using barium carbonate as reactant, was investigated. Several parameters have been investigated and studied by other authors. These parameters include different barium salts, different barium carbonate types, reaction kinetics, co–precipitation of calcium carbonate, barium–to–sulphate molar ratios, the effect of temperature and pH. The sulphate removal process was tested and verified on three different industrial effluents. The results and conclusions from these publications were used to guide the experimental work. A number of parameters were examined under laboratory conditions in order to find the optimum conditions for the precipitation reaction to take place. This included mixing rotational speed, barium–to–sulphate molar ratio, initial sulphate concentration, the effect of temperature and the influence of different barium carbonate particle structures. It was found that the reaction temperature and the particle structure of barium carbonate influenced the process significantly. The mixing rotational speed, barium–to–sulphate dosing ratios and the initial sulphate concentration influenced the removal process, but not to such a great extent as the two previously mentioned parameters. The results of these experiments were then tested and verified on AMD from a coal mine. The results from the literature analysis were compared to the experiments conducted in the laboratory. It was found that the results reported in the literature and the laboratory results correlated well with each other. Though, in order to optimise this sulphate removal process, one has to understand the sulphate precipitation reaction. Therefore it is recommended that a detailed reaction kinetic study should be conducted to establish the driving force of the kinetics of the precipitation reactions. In order to upgrade this process to pilot–scale and then to a full–scale plant, continuous reactor configurations should also be investigated. The sulphate removal stage in the ABC Desalination Process is the final treatment step. The effluent was measured against the SANS Class II potable water standard and was found that the final water met all the criteria and could be safely discharged into the environment. / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2012.
6

Biodessulfatação com posterior oxidação parcial do sulfeto em reatores operados em bateladas seqüenciais / Biological sulphate removal with partial oxidation of sulfide in sequencial batch reactors

Silva, Ariovaldo José da 18 February 2005 (has links)
Em reatores biológicos anaeróbios adequadamente projetados, 'SO IND.4'POT.2-' pode ser reduzido a sulfeto pelas bactérias redutoras de sulfato (BRS), o qual, posteriormente, pode ser oxidado a enxofre elementar, em presença de baixas concentrações de oxigênio dissolvido ('< OU =' 0,1 mg/L). Na presente tese, o processo de biodessulfatação foi estudado em reatores anaeróbios operados em bateladas seqüenciais, com biomassa imobilizada em espuma de poliuretano (PU) e em carvão vegetal (CV), previamente selecionados por testes de adesão microbiana em reatores diferenciais. Posteriormente, avaliou-se o efeito de etanol sobre o desempenho do processo de biodessulfatação. As principais rotas de utilização de substratos orgânicos pelos microrganismos foram identificadas por meio de modelação cinética. A comunidade microbiana foi avaliada por hibridação in situ com fluorescência (FISH). Após o processo de biodessulfatação, avaliou-se o processo de oxidação parcial do sulfeto, em reator aeróbio operado em bateladas seqüenciais, com biomassa imobilizada em PU. Concluiu-se por FISH que as características intrínsecas dos materiais suportes influenciam o equilíbrio microbiano. A relação DQO/['SO IND.4'POT.2-'] igual a 1,3 representou a melhor condição para o processo de biodessulfatação, com PU e com CV como materiais suporte, com eficiência média em redução de sulfato igual a 96%. A adição de etanol melhorou o processo de redução de sulfato. Sulfeto gerado no processo de biodessulfatação foi oxidado parcialmente a enxofre elementar, com eficiência de remoção de 80% no reator aeróbio / In anaerobic biological systems for wastewater treatment well-designed sulphate can be reduced to sulfide by sulphate-reducing bacteria (SRB), and it can be subsequently oxidized to elemental sulphur, under low dissolved oxygen concentration ('< OU =' 0.1 mg/L). The present thesis evaluates the microbial sulphate reduction process in anaerobic sequencing batch biofilm reactors with immobilized biomass in polyurethane foam (PU) and vegetable coal (CV). Such support materials were previously selected by microbial adhesion tests executed in differential reactors. Afterwards, the effect of ethanol addition on the performance of sulphate reduction process was assessed. The main metabolic pathways of organic substrate utilization by microorganisms were identified by kinectic modelation. The microbial community was evaluated by fluorescence in situ hybridization (FISH). The partial sulfide oxidation process was also evaluated in aerobic sequencing batch reactor containing biomass immobilized in PU matrices. It was concluded by FISH that characteristics of the support materials has influence on the microbial equilibrium. The COD/['SO IND.4'POT.2-'] ratio equal to 1.3 provided the best condition for microbial sulphate reduction process in both reactors with mean efficience of 96%. The ethanol addition improved the sulphate reducing process. The sulfide generated was partialy oxidized to elemental sulphur in the aerobic reactor with removal efficience of 80%
7

Biodessulfatação com posterior oxidação parcial do sulfeto em reatores operados em bateladas seqüenciais / Biological sulphate removal with partial oxidation of sulfide in sequencial batch reactors

Ariovaldo José da Silva 18 February 2005 (has links)
Em reatores biológicos anaeróbios adequadamente projetados, 'SO IND.4'POT.2-' pode ser reduzido a sulfeto pelas bactérias redutoras de sulfato (BRS), o qual, posteriormente, pode ser oxidado a enxofre elementar, em presença de baixas concentrações de oxigênio dissolvido ('< OU =' 0,1 mg/L). Na presente tese, o processo de biodessulfatação foi estudado em reatores anaeróbios operados em bateladas seqüenciais, com biomassa imobilizada em espuma de poliuretano (PU) e em carvão vegetal (CV), previamente selecionados por testes de adesão microbiana em reatores diferenciais. Posteriormente, avaliou-se o efeito de etanol sobre o desempenho do processo de biodessulfatação. As principais rotas de utilização de substratos orgânicos pelos microrganismos foram identificadas por meio de modelação cinética. A comunidade microbiana foi avaliada por hibridação in situ com fluorescência (FISH). Após o processo de biodessulfatação, avaliou-se o processo de oxidação parcial do sulfeto, em reator aeróbio operado em bateladas seqüenciais, com biomassa imobilizada em PU. Concluiu-se por FISH que as características intrínsecas dos materiais suportes influenciam o equilíbrio microbiano. A relação DQO/['SO IND.4'POT.2-'] igual a 1,3 representou a melhor condição para o processo de biodessulfatação, com PU e com CV como materiais suporte, com eficiência média em redução de sulfato igual a 96%. A adição de etanol melhorou o processo de redução de sulfato. Sulfeto gerado no processo de biodessulfatação foi oxidado parcialmente a enxofre elementar, com eficiência de remoção de 80% no reator aeróbio / In anaerobic biological systems for wastewater treatment well-designed sulphate can be reduced to sulfide by sulphate-reducing bacteria (SRB), and it can be subsequently oxidized to elemental sulphur, under low dissolved oxygen concentration ('< OU =' 0.1 mg/L). The present thesis evaluates the microbial sulphate reduction process in anaerobic sequencing batch biofilm reactors with immobilized biomass in polyurethane foam (PU) and vegetable coal (CV). Such support materials were previously selected by microbial adhesion tests executed in differential reactors. Afterwards, the effect of ethanol addition on the performance of sulphate reduction process was assessed. The main metabolic pathways of organic substrate utilization by microorganisms were identified by kinectic modelation. The microbial community was evaluated by fluorescence in situ hybridization (FISH). The partial sulfide oxidation process was also evaluated in aerobic sequencing batch reactor containing biomass immobilized in PU matrices. It was concluded by FISH that characteristics of the support materials has influence on the microbial equilibrium. The COD/['SO IND.4'POT.2-'] ratio equal to 1.3 provided the best condition for microbial sulphate reduction process in both reactors with mean efficience of 96%. The ethanol addition improved the sulphate reducing process. The sulfide generated was partialy oxidized to elemental sulphur in the aerobic reactor with removal efficience of 80%
8

Experimental and computational studies on sulphate removal from mine water by improved lime precipitation

Nurmesniemi, E.-T. (Emma-Tuulia) 13 November 2018 (has links)
Abstract Lime precipitation has been used for the treatment of mine water for decades; however, the impact of precipitation conditions is not adequately known. In this thesis, four aspects related to the removal of sulphate from mine water by lime precipitation are considered: the effect of magnesium on lime precipitation, the utilisation of by-products in lime precipitation, enhancement of lime precipitation, and utilisation of the precipitate. Sulphate removal in the presence of magnesium at the commonly used lime precipitation treatment pH of 9.6 was found unefficient as magnesium was keeping the sulphate soluble in the form of magnesium sulphate. At higher treatment pH of 11.5, magnesium that was naturally present in the mine water was shown to precipitate as magnesium hydroxide, which could serve as seed crystals for gypsum or co-precipitate sulphate thus enhancing sulphate removal. Quicklime manufacturing generates by-products that, currently, have few applications. The by-products examined in this study were successfully applied for mine water neutralization replacing commercial lime products. These by-products were found to remove sulphate equally well from the mine water. However, differences between by-products were observed in the consumption, and produced sludge quantities and qualities. An enhanced lime precipitation method is the precipitation as ettringite, which was used to reduce the sulphate content in mine water to less than the value set as the drinking water guideline in Finland. Furthermore, the formed precipitate was found to remove arsenate from the model solution. / Tiivistelmä Vaikka kalkkisaostusta on käytetty kaivosten vesienkäsittelyyn useiden vuosikymmenten ajan, tieto olosuhteiden vaikutuksesta käsittelyn tehokkuuteen sulfaatin poiston osalta on puutteellista. Tämä väitöskirja käsittelee sulfaatinpoistoa kaivosvesistä kalkkisaostuksen avulla neljällä eri osa-alueella: magnesiumin vaikutus kalkkisaostukseen, kalkinpolton sivutuotteiden hyödyntäminen kalkkisaostuksessa, kalkkisaostuksen tehostaminen ja muodostuvan saostuman hyödyntäminen. Magnesiumin todettiin kokeellisesti ja laskennallisesti haittaavan sulfaatin poistoa kaivosvedestä kalkkisaostuksessa yleisesti käytetyssä pH:ssa 9.6 pitämällä sulfaattia liukoisessa muodossa magnesiumsulfaattina. Korkeammassa pH:ssa 11.5 puolestaan kaivosveden luontaisesti sisältämän magnesiumin havaittiin kokeellisesti ja laskennallisesti saostuvan magnesiumhydroksidina, joka voi toimia siemenkiteinä kipsille tai kerasaostaa sulfaattia ja siten tehostaa sulfaatin poistoa. Kalkinpolton sivutuotteina muodostuu jakeita, joille ei tällä hetkellä ole juurikaan käyttökohteita. Tässä työssä käytettiin kalkinpolton sivutuotteita korvaamaan kaupallista kalkkia kaivosveden neutraloinnissa. Sivutuotteet poistivat sulfaattia yhtä tehokkaasti kuin kaupalliset kalkkituotteet. Sivutuotteiden välillä havaittiin eroja niiden kulutuksessa sekä muodostuvan lietteen määrässä ja laadussa. Saostuksella ettringiittinä, joka on tehostettu versio perinteisestä kalkkisaostuksesta, saavutettiin sulfaattipitoisuuden lasku alle Suomessa juomavedelle käytetyn suositusarvon. Lisäksi havaittiin muodostuneen ettringiittisaostuman olevan potentiaalinen materiaali arsenaatin poistoon vedestä.

Page generated in 0.9536 seconds