• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some Generalizations in the Theory of Summable Series

Penner, Jimmie G. 08 1900 (has links)
It will be our purpose to study a generalized definition of sum of a series and the restrictions which must be placed upon it in order that it shall satisfy the generally accepted requirements of any generalized definition of sum of a series. We shall then proceed to investigate the possibilities of further generalizing this process.
2

Existência de medidas invariantes para aplicações no intervalo com presença de pontos críticos e singularidades

Montoya, Jorge Luis Abanto 20 May 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-07-28T20:14:59Z No. of bitstreams: 1 jorgeluisabantomontoya.pdf: 600922 bytes, checksum: 4b3e153d0e21453a8c9529785f8de3be (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-29T11:42:38Z (GMT) No. of bitstreams: 1 jorgeluisabantomontoya.pdf: 600922 bytes, checksum: 4b3e153d0e21453a8c9529785f8de3be (MD5) / Made available in DSpace on 2016-07-29T11:42:38Z (GMT). No. of bitstreams: 1 jorgeluisabantomontoya.pdf: 600922 bytes, checksum: 4b3e153d0e21453a8c9529785f8de3be (MD5) Previous issue date: 2016-05-20 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Provaremos a existência de medidas de probabilidade invariantes absolutamente contínuas com respeito à medida de Lebesgue. Aqui trabalhamos com uma classe de funções que denotamos por F, esta classe consiste de aplicações no intervalo f : M ! M, que possuem pontos críticos e singularidades mais outras propriedades. É preciso mencionar que uma das propriedades é a condição de somabilidade ao longo da órbita crítica que vai ajudar a ter resultados importantes para nosso trabalho. O resultado principal diz que, para cada f 2 F existe uma medida de probabilidade invariante absolutamente contínua. Para conseguir este resultado, provaremos um teorema auxiliar que trata da existência de uma partição enumerável I de intervalos abertos de M, de uma aplicação que chamamos tempo induzido : M ! N que é constante nos elementos da partição I, tal que a aplicação ˆ f : M ! M definida por ˆ f = f que chamamos aplicação induzida, satisfaz três propriedades importantes que são, expansão, variação somável e tempo induzido somável. Por isso ao longo do trabalho vamos concentrar em provar essas três propriedades. O ponto importante é que as duas primeiras propriedades junto com o teorema A garantem a existência de uma medida de probabilidade absolutamente contínua para ˆ f, finalmente utilizando a terceira propriedade junto com a proposição A, obtemos a existência de uma medida de probabilidade absolutamente contínua para nossa f. / We prove the existence of invariant probability measures absolutely continuous with respect to Lebesgue measure. Here we work with a class of maps that we denote by F, this class consists of interval maps f : M ! M, having critical points and singularities more other properties. I must mention that one of the properties is the condition of summability along the critical orbit which will help to have important results for our work. The main result says, for each f 2 F there is a probability measure invariant absolutely continuous. To achieve this result, we prove an auxiliary theorem that is the existence of a countable partition I of open intervals of M, an map that called induced time : M ! N that is constant on the elements of the partition I, such that the map ˆ f : M ! M defined by ˆ f = f we call induced map, satisfies three important properties that are, expanding, summable variation and summable induced time. So throughout the work we focus on evidence these three properties. The important point is that the first two properties together with theorem A ensures the existence of a measure absolutely continuous probability ˆ f, finally using the third property together with proposition A, we get the existence of an absolutely continuous probability measure for our f.
3

Sobre existência de estados de equilíbrio e limite em temperatura zero para shifts de Markov topologicamente mixing / On equilibrium states existence and zero temperature limit for topologically mixing Markov shifts.

Cubides, Victor Andres Vargas 16 October 2015 (has links)
O objetivo desta tese é demonstrar que para um subshift de Markov topologicamente transitivo com alfabeto enumerável e um potencial &#402 com pressão de Gurevic finita e variação limitada (&#402) < &#8734, existe um único estado de equilíbrio &#181t&#402 para cada t > 1, e a família (&#181t&#402)t>1 tem um ponto de acumulação quando t > &#8734. Além disso se também supomos que o &#402 é um potencial de Markov, demonstramos que a família de estados de equilíbrio (&#181t&#402)t>1 converge quando t > &#8734. Finalmente demonstramos a continuidade em &#8734 da entropia com respeito ao parâmetro t. Estes resultados não dependem da hipótese de existência de medidas de Gibbs. / The aim of this thesis is to prove that for a topologically transitive Markov subshift with countable alphabet and a summable potential &#402 with finite topological pressure Gurevic and bounded variation (&#402) < &#8734, there exists an equilibrium state &#181t&#402 tf for each t > 1 and the family of equilibrium states (&#181t&#402)t>1 associated to each potential tf has an accumulation point at t > &#8734. Moreover if we also assume that &#402 is a Markov potential we prove that the equilibrium states family (&#181t&#402)t>1 converges when t > &#8734. Finally we prove the continuity at &#8734 of the entropy with respect to the parameter t. These results do not depend on assuming the existence of Gibbs measures.
4

Sobre existência de estados de equilíbrio e limite em temperatura zero para shifts de Markov topologicamente mixing / On equilibrium states existence and zero temperature limit for topologically mixing Markov shifts.

Victor Andres Vargas Cubides 16 October 2015 (has links)
O objetivo desta tese é demonstrar que para um subshift de Markov topologicamente transitivo com alfabeto enumerável e um potencial &#402 com pressão de Gurevic finita e variação limitada (&#402) < &#8734, existe um único estado de equilíbrio &#181t&#402 para cada t > 1, e a família (&#181t&#402)t>1 tem um ponto de acumulação quando t > &#8734. Além disso se também supomos que o &#402 é um potencial de Markov, demonstramos que a família de estados de equilíbrio (&#181t&#402)t>1 converge quando t > &#8734. Finalmente demonstramos a continuidade em &#8734 da entropia com respeito ao parâmetro t. Estes resultados não dependem da hipótese de existência de medidas de Gibbs. / The aim of this thesis is to prove that for a topologically transitive Markov subshift with countable alphabet and a summable potential &#402 with finite topological pressure Gurevic and bounded variation (&#402) < &#8734, there exists an equilibrium state &#181t&#402 tf for each t > 1 and the family of equilibrium states (&#181t&#402)t>1 associated to each potential tf has an accumulation point at t > &#8734. Moreover if we also assume that &#402 is a Markov potential we prove that the equilibrium states family (&#181t&#402)t>1 converges when t > &#8734. Finally we prove the continuity at &#8734 of the entropy with respect to the parameter t. These results do not depend on assuming the existence of Gibbs measures.
5

A study of Dunford-Pettis-like properties with applications to polynomials and analytic functions on normed spaces / Elroy Denovanne Zeekoei

Zeekoei, Elroy Denovanne January 2011 (has links)
Recall that a Banach space X has the Dunford-Pettis property if every weakly compact operator defined on X takes weakly compact sets into norm compact sets. Some valuable characterisations of Banach spaces with the Dunford-Pettis property are: X has the DPP if and only if for all Banach spaces Y, every weakly compact operator from X to Y sends weakly convergent sequences onto norm convergent sequences (i.e. it requires that weakly compact operators on X are completely continuous) and this is equivalent to “if (xn) and (x*n) are sequences in X and X* respectively and limn xn = 0 weakly and limn x*n = 0 weakly then limn x*n xn = 0". A striking application of the Dunford-Pettis property (as was observed by Grothendieck) is to prove that if X is a linear subspace of L() for some finite measure  and X is closed in some Lp() for 1 ≤ p < , then X is finite dimensional. The fact that the well known spaces L1() and C() have this property (as was proved by Dunford and Pettis) was a remarkable achievement in the early history of Banach spaces and was motivated by the study of integral equations and the hope to develop an understanding of linear operators on Lp() for p ≥ 1. In fact, it played an important role in proving that for each weakly compact operator T : L1()  L1() or T : C()  C(), the operator T2 is compact, a fact which is important from the point of view that there is a nice spectral theory for compact operators and operators whose squares are compact. There is an extensive literature involving the Dunford-Pettis property. Almost all the articles and books in our list of references contain some information about this property, but there are plenty more that could have been listed. The reader is for instance referred to [4], [5], [7], [8], [10], [17] and [24] for information on the role of the DPP in different areas of Banach space theory. In this dissertation, however, we are motivated by the two papers [7] and [8] to study alternative Dunford-Pettis properties, to introduce a scale of (new) alternative Dunford-Pettis properties, which we call DP*-properties of order p (briefly denoted by DP*P), and to consider characterisations of Banach spaces with these properties as well as applications thereof to polynomials and holomorphic functions on Banach spaces. In the paper [8] the class Cp(X, Y) of p-convergent operators from a Banach space X to a Banach space Y is introduced. Replacing the requirement that weakly compact operators on X should be completely continuous in the case of the DPP for X (as is mentioned above) by “weakly compact operators on X should be p-convergent", an alternative Dunford-Pettis property (called the Dunford-Pettis property of order p) is introduced. More precisely, if 1 ≤ p ≤ , a Banach space X is said to have DPPp if the inclusion W(X, Y)  Cp(X, Y) holds for all Banach spaces Y . Here W(X, Y) denotes the family of all weakly compact operators from X to Y. We now have a scale of “Dunford-Pettis like properties" in the sense that all Banach spaces have the DPP1, if p < q, then each Banach space with the DPPq also has the DPPp and the strongest property, namely the DPP1 coincides with the DPP. In the paper [7] the authors study a property on Banach spaces (called the DP*-property, or briey the DP*P) which is stronger than the DPP, in the sense that if a Banach space has this property then it also has DPP. We say X has the DP*P, when all weakly compact sets in X are limited, i.e. each sequence (x*n)  X * in the dual space of X which converges weak* to 0, also converges uniformly (to 0) on all weakly compact sets in X. It turns out that this property is equivalent to another property on Banach spaces which is introduced in [17] (and which is called the *-Dunford-Pettis property) as follows: We say a Banach space X has the *-Dunford-Pettis property if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. After a thorough study of the DP*P, including characterisations and examples of Banach spaces with the DP*P, the authors in [7] consider some applications to polynomials and analytic functions on Banach spaces. Following an extensive literature study and in depth research into the techniques of proof relevant to this research field, we are able to present a thorough discussion of the results in [7] and [8] as well as some selected (relevant) results from other papers (for instance, [2] and [17]). This we do in Chapter 2 of the dissertation. The starting point (in Section 2.1 of Chapter 2) is the introduction of the so called p-convergent operators, being those bounded linear operators T : X  Y which transform weakly p-summable sequences into norm-null sequences, as well as the so called weakly p-convergent sequences in Banach spaces, being those sequences (xn) in a Banach space X for which there exists an x  X such that the sequence (xn - x) is weakly p-summable. Using these concepts, we state and prove an important characterisation (from the paper [8]) of Banach spaces with DPPp. In Section 2.2 (of Chapter 2) we continue to report on the results of the paper [7], where the DP*P on Banach spaces is introduced. We focus on the characterisation of Banach spaces with DP*P, obtaining among others that a Banach space X has DP*P if and only if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. An important characterisation of the DP*P considered in this section is the fact that X has DP*P if and only if every T  L(X, c0) is completely continuous. This result proves to be of fundamental importance in the study of the DP*P and its application to results on polynomials and holomorphic functions on Banach spaces. To be able to report on the applications of the DP*P in the context of homogeneous polynomials and analytic functions on Banach spaces, we embark on a study of “Complex Analysis in Banach spaces" (mostly with the focus on homogeneous polynomials and analytic functions on Banach spaces). This we do in Chapter 3; the content of the chapter is mostly based on work in the books [23] and [14], but also on the work in some articles such as [15]. After we have discussed the relevant theory of complex analysis in Banach spaces in Chapter 3, we devote Chapter 4 to considering properties of polynomials and analytic functions on Banach spaces with DP*P. The discussion in Chapter 4 is based on the applications of DP*P in the paper [7]. Finally, in Chapter 5 of the dissertation, we contribute to the study of “Dunford-Pettis like properties" by introducing the Banach space property “DP*P of order p", or briefly the DP*Pp for Banach spaces. Using the concept “weakly p-convergent sequence in Banach spaces" as is defined in [8], we define weakly-p-compact sets in Banach spaces. Then a Banach space X is said to have the DP*-property of order p (for 1 ≤ p ≤ ) if all weakly-p-compact sets in X are limited. In short, we say X has DP*Pp. As in [8] (where the DPPp is introduced), we now have a scale of DP*P-like properties, in the sense that all Banach spaces have DP*P1 and if p < q and X has DP*Pq then it has DP*Pp. The strongest property DP*P coincides with DP*P. We prove characterisations of Banach spaces with DP*Pp, discuss some examples and then consider applications to polynomials and analytic functions on Banach spaces. Our results and techniques in this chapter depend very much on the results obtained in the previous three chapters, but now we have to find our own correct definitions and formulations of results within this new context. We do this with some success in Sections 5.1 and 5.2 of Chapter 5. Chapter 1 of this dissertation provides a wide range of concepts and results in Banach spaces and the theory of vector sequence spaces (some of them very deep results from books listed in the bibliography). These results are mostly well known, but they are scattered in the literature - they are discussed in Chapter 1 (some with proof, others without proof, depending on the importance of the arguments in the proofs for later use and depending on the detail with which the results are discussed elsewhere in the literature) with the intention to provide an exposition which is mostly self contained and which will be comfortably accessible for graduate students. The dissertation reflects the outcome of our investigation in which we set ourselves the following goals: 1. Obtain a thorough understanding of the Dunford-Pettis property and some related (both weaker and stronger) properties that have been studied in the literature. 2. Focusing on the work in the paper [8], understand the role played in the study of difierent classes of operators by a scale of properties on Banach spaces, called the DPPp, which are weaker than the DP-property and which are introduced in [8] by using the weakly p-summable sequences in X and weakly null sequences in X*. 3. Focusing on the work in the paper [7], investigate the DP*P for Banach spaces, which is the exact property to answer a question of Pelczynsky's regarding when every symmetric bilinear separately compact map X x X  c0 is completely continuous. 4. Based on the ideas intertwined in the work of the paper [8] in the study of a scale of DP-properties and the work in the paper [7], introduce the DP*Pp on Banach spaces and investigate their applications to spaces of operators and in the theory of polynomials and analytic mappings on Banach spaces. Thereby, not only extending the results in [7] to a larger family of Banach spaces, but also to find an answer to the question: “When will every symmetric bilinear separately compact map X x X  c0 be p-convergent?" / Thesis (M.Sc. (Mathematics))--North-West University, Potchefstroom Campus, 2012.
6

A study of Dunford-Pettis-like properties with applications to polynomials and analytic functions on normed spaces / Elroy Denovanne Zeekoei

Zeekoei, Elroy Denovanne January 2011 (has links)
Recall that a Banach space X has the Dunford-Pettis property if every weakly compact operator defined on X takes weakly compact sets into norm compact sets. Some valuable characterisations of Banach spaces with the Dunford-Pettis property are: X has the DPP if and only if for all Banach spaces Y, every weakly compact operator from X to Y sends weakly convergent sequences onto norm convergent sequences (i.e. it requires that weakly compact operators on X are completely continuous) and this is equivalent to “if (xn) and (x*n) are sequences in X and X* respectively and limn xn = 0 weakly and limn x*n = 0 weakly then limn x*n xn = 0". A striking application of the Dunford-Pettis property (as was observed by Grothendieck) is to prove that if X is a linear subspace of L() for some finite measure  and X is closed in some Lp() for 1 ≤ p < , then X is finite dimensional. The fact that the well known spaces L1() and C() have this property (as was proved by Dunford and Pettis) was a remarkable achievement in the early history of Banach spaces and was motivated by the study of integral equations and the hope to develop an understanding of linear operators on Lp() for p ≥ 1. In fact, it played an important role in proving that for each weakly compact operator T : L1()  L1() or T : C()  C(), the operator T2 is compact, a fact which is important from the point of view that there is a nice spectral theory for compact operators and operators whose squares are compact. There is an extensive literature involving the Dunford-Pettis property. Almost all the articles and books in our list of references contain some information about this property, but there are plenty more that could have been listed. The reader is for instance referred to [4], [5], [7], [8], [10], [17] and [24] for information on the role of the DPP in different areas of Banach space theory. In this dissertation, however, we are motivated by the two papers [7] and [8] to study alternative Dunford-Pettis properties, to introduce a scale of (new) alternative Dunford-Pettis properties, which we call DP*-properties of order p (briefly denoted by DP*P), and to consider characterisations of Banach spaces with these properties as well as applications thereof to polynomials and holomorphic functions on Banach spaces. In the paper [8] the class Cp(X, Y) of p-convergent operators from a Banach space X to a Banach space Y is introduced. Replacing the requirement that weakly compact operators on X should be completely continuous in the case of the DPP for X (as is mentioned above) by “weakly compact operators on X should be p-convergent", an alternative Dunford-Pettis property (called the Dunford-Pettis property of order p) is introduced. More precisely, if 1 ≤ p ≤ , a Banach space X is said to have DPPp if the inclusion W(X, Y)  Cp(X, Y) holds for all Banach spaces Y . Here W(X, Y) denotes the family of all weakly compact operators from X to Y. We now have a scale of “Dunford-Pettis like properties" in the sense that all Banach spaces have the DPP1, if p < q, then each Banach space with the DPPq also has the DPPp and the strongest property, namely the DPP1 coincides with the DPP. In the paper [7] the authors study a property on Banach spaces (called the DP*-property, or briey the DP*P) which is stronger than the DPP, in the sense that if a Banach space has this property then it also has DPP. We say X has the DP*P, when all weakly compact sets in X are limited, i.e. each sequence (x*n)  X * in the dual space of X which converges weak* to 0, also converges uniformly (to 0) on all weakly compact sets in X. It turns out that this property is equivalent to another property on Banach spaces which is introduced in [17] (and which is called the *-Dunford-Pettis property) as follows: We say a Banach space X has the *-Dunford-Pettis property if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. After a thorough study of the DP*P, including characterisations and examples of Banach spaces with the DP*P, the authors in [7] consider some applications to polynomials and analytic functions on Banach spaces. Following an extensive literature study and in depth research into the techniques of proof relevant to this research field, we are able to present a thorough discussion of the results in [7] and [8] as well as some selected (relevant) results from other papers (for instance, [2] and [17]). This we do in Chapter 2 of the dissertation. The starting point (in Section 2.1 of Chapter 2) is the introduction of the so called p-convergent operators, being those bounded linear operators T : X  Y which transform weakly p-summable sequences into norm-null sequences, as well as the so called weakly p-convergent sequences in Banach spaces, being those sequences (xn) in a Banach space X for which there exists an x  X such that the sequence (xn - x) is weakly p-summable. Using these concepts, we state and prove an important characterisation (from the paper [8]) of Banach spaces with DPPp. In Section 2.2 (of Chapter 2) we continue to report on the results of the paper [7], where the DP*P on Banach spaces is introduced. We focus on the characterisation of Banach spaces with DP*P, obtaining among others that a Banach space X has DP*P if and only if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. An important characterisation of the DP*P considered in this section is the fact that X has DP*P if and only if every T  L(X, c0) is completely continuous. This result proves to be of fundamental importance in the study of the DP*P and its application to results on polynomials and holomorphic functions on Banach spaces. To be able to report on the applications of the DP*P in the context of homogeneous polynomials and analytic functions on Banach spaces, we embark on a study of “Complex Analysis in Banach spaces" (mostly with the focus on homogeneous polynomials and analytic functions on Banach spaces). This we do in Chapter 3; the content of the chapter is mostly based on work in the books [23] and [14], but also on the work in some articles such as [15]. After we have discussed the relevant theory of complex analysis in Banach spaces in Chapter 3, we devote Chapter 4 to considering properties of polynomials and analytic functions on Banach spaces with DP*P. The discussion in Chapter 4 is based on the applications of DP*P in the paper [7]. Finally, in Chapter 5 of the dissertation, we contribute to the study of “Dunford-Pettis like properties" by introducing the Banach space property “DP*P of order p", or briefly the DP*Pp for Banach spaces. Using the concept “weakly p-convergent sequence in Banach spaces" as is defined in [8], we define weakly-p-compact sets in Banach spaces. Then a Banach space X is said to have the DP*-property of order p (for 1 ≤ p ≤ ) if all weakly-p-compact sets in X are limited. In short, we say X has DP*Pp. As in [8] (where the DPPp is introduced), we now have a scale of DP*P-like properties, in the sense that all Banach spaces have DP*P1 and if p < q and X has DP*Pq then it has DP*Pp. The strongest property DP*P coincides with DP*P. We prove characterisations of Banach spaces with DP*Pp, discuss some examples and then consider applications to polynomials and analytic functions on Banach spaces. Our results and techniques in this chapter depend very much on the results obtained in the previous three chapters, but now we have to find our own correct definitions and formulations of results within this new context. We do this with some success in Sections 5.1 and 5.2 of Chapter 5. Chapter 1 of this dissertation provides a wide range of concepts and results in Banach spaces and the theory of vector sequence spaces (some of them very deep results from books listed in the bibliography). These results are mostly well known, but they are scattered in the literature - they are discussed in Chapter 1 (some with proof, others without proof, depending on the importance of the arguments in the proofs for later use and depending on the detail with which the results are discussed elsewhere in the literature) with the intention to provide an exposition which is mostly self contained and which will be comfortably accessible for graduate students. The dissertation reflects the outcome of our investigation in which we set ourselves the following goals: 1. Obtain a thorough understanding of the Dunford-Pettis property and some related (both weaker and stronger) properties that have been studied in the literature. 2. Focusing on the work in the paper [8], understand the role played in the study of difierent classes of operators by a scale of properties on Banach spaces, called the DPPp, which are weaker than the DP-property and which are introduced in [8] by using the weakly p-summable sequences in X and weakly null sequences in X*. 3. Focusing on the work in the paper [7], investigate the DP*P for Banach spaces, which is the exact property to answer a question of Pelczynsky's regarding when every symmetric bilinear separately compact map X x X  c0 is completely continuous. 4. Based on the ideas intertwined in the work of the paper [8] in the study of a scale of DP-properties and the work in the paper [7], introduce the DP*Pp on Banach spaces and investigate their applications to spaces of operators and in the theory of polynomials and analytic mappings on Banach spaces. Thereby, not only extending the results in [7] to a larger family of Banach spaces, but also to find an answer to the question: “When will every symmetric bilinear separately compact map X x X  c0 be p-convergent?" / Thesis (M.Sc. (Mathematics))--North-West University, Potchefstroom Campus, 2012.

Page generated in 2.6183 seconds