• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stokes parameters of skylight based on simulations and polarized radiometer measurements

Li, Li 04 November 2016 (has links) (PDF)
A method to calculate the Stokes parameters Q, U, as well as angle of polarization (AoP) from the new generation CIMEL Dual-Polar sun/sky radiometer CE318-DP polarized skylight measurements is developed in this thesis. Besides the degree of linear polarization (DoLP) and the total radiance I, the parameters Q, U, and AoP have much potential to improve retrievals of aerosol microphysical and chemical properties. However, they have not been derived based on the CE318-DP so far because they change with the reference plane that is hard to know due to an uncontrolled initial angle related to installation of the optical sensor head to the automated mount of this type of instrument. In this work, the polarization pattern of skylight with the direction of polarization perpendicular to the scattering plane (i.e., the principal plane in the solar principal plane geometry) is applied to correct the initial angle and then to obtained Q, U, and AoP. The perpendicular and parallel polarized radiances Ir and Il, as well as the linear depolarization ratio ρ are further derived after Q is known. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. These new polarization parameters in conjunction with DoLP and I are analyzed based on some typical long-term sites within the Sun/sky-radiometer Observation NETwork (SONET) and a joint site of the AErosol RObotic NETwork (AERONET) in China. Results calculated in this work are consistent with previous results, and generally comparable with the vector radiative transfer simulations and the measurements by other polarimetric instrument. Considering a 1°discrepancy of AoP, 3% fractional uncertainty in I and 0.005 uncertainty in DoLP propagated to Q and U, the uncertainties of Q in both of solar principal and almucantar planes and that of U in the almucantar geometry are acceptable.
2

Aerosol loading over the South African Highveld

Bigala, Thomas Aquinas 31 March 2009 (has links)
The Highveld region of South Africa contributes substantially to the aerosol loading over southern Africa because of its importance as an industrial, mining and farming base. Aerosols affect climate by absorbing or reflecting incoming solar radiation, and by affecting cloud microphysics, cloud albedo and precipitation. The physical and optical properties of industrial/urban aerosols over the Highveld region of South Africa were analysed during a 32-day winter sampling period (21 May to 21 June) in 2002; a 32-day summer sampling period (21 October to 21 November) in 2002, and a second 32-day winter sampling period (19 May to 19 June) in 2003. Synoptic circulation systems were examined in as far as they affect the horizontal transport of aerosols over the Highveld region. Measurements of aerosol optical thickness (AOT) from the ground to the top of the atmosphere and aerosol size distribution characteristics over the Highveld region were taken using hand-held hazemeters and a CIMEL sun photometer. The AOT observed over the region during the winter 2002 and 2003 sampling periods and during the summer 2002 sampling period indicated high turbidity. In the 2002 winter sampling period, the AOT530nm ranged between 0.05 to 0.7 with an average of 0.14. In the 2002 summer sampling period, the AOT530nm ranged between 0.05 to 0.6, with an average of 0.24. In the 2003 winter sampling period, the AOT500nm ranged between 0.06 to 0.6, with an average of 0.21. The Ångström exponent value had a wide range, 0.8 to 2.4 in the 2002 winter and summer sampling periods and also in the 2003 winter sampling period, indicating that a range of particle sizes was present over the Highveld region. The Ångström exponent values obtained were derived from the influences of Aeolian dust, coarse-mode industrial particles and, to a small extent, fine-mode biomassburning aerosols. Case studies, based on trajectory analysis and meteorology of the sampling area, were made of the aerosols emanating from the township sites during each of the three sampling periods to observe the build-up and dispersion of aerosols at that time.
3

Stokes parameters of skylight based on simulations and polarized radiometer measurements

Li, Li 05 October 2016 (has links)
A method to calculate the Stokes parameters Q, U, as well as angle of polarization (AoP) from the new generation CIMEL Dual-Polar sun/sky radiometer CE318-DP polarized skylight measurements is developed in this thesis. Besides the degree of linear polarization (DoLP) and the total radiance I, the parameters Q, U, and AoP have much potential to improve retrievals of aerosol microphysical and chemical properties. However, they have not been derived based on the CE318-DP so far because they change with the reference plane that is hard to know due to an uncontrolled initial angle related to installation of the optical sensor head to the automated mount of this type of instrument. In this work, the polarization pattern of skylight with the direction of polarization perpendicular to the scattering plane (i.e., the principal plane in the solar principal plane geometry) is applied to correct the initial angle and then to obtained Q, U, and AoP. The perpendicular and parallel polarized radiances Ir and Il, as well as the linear depolarization ratio ρ are further derived after Q is known. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. These new polarization parameters in conjunction with DoLP and I are analyzed based on some typical long-term sites within the Sun/sky-radiometer Observation NETwork (SONET) and a joint site of the AErosol RObotic NETwork (AERONET) in China. Results calculated in this work are consistent with previous results, and generally comparable with the vector radiative transfer simulations and the measurements by other polarimetric instrument. Considering a 1°discrepancy of AoP, 3% fractional uncertainty in I and 0.005 uncertainty in DoLP propagated to Q and U, the uncertainties of Q in both of solar principal and almucantar planes and that of U in the almucantar geometry are acceptable.
4

Quantification et étude du transport des polluants dans la troposphère tropicale de l'océan Indien / Quantification and study of the pollutants transportation in the troposphere of the Indian Ocean

Duflot, Valentin 05 November 2011 (has links)
Ces travaux de recherche se sont focalisés sur la zone Océan Indien austral et ont permis d'améliorer les connaissances scientifiques sur la provenance des masses d'air polluées, sur leur distribution spatiale, sur la contribution relative des zones sources à la charge en polluant mesurée, et sur les propriétés optiques des aérosols détectés. La prépondérance de l'influence du transport des masses d'air polluées en provenance d'Afrique Australe et d'Amérique Latine à la concentration en polluant dans le sud-ouest de l'océan Indien a ainsi été démontrée en utilisant des mesures par spectrométrie infrarouge à transformée de Fourier et des modèles de dispersion de panache couplés à des bases de données d'émission. Une voie de transport privilégiée reliant l'Asie du sud-est au sud-ouest de l'océan Indien dans la haute troposphère en Juillet-Août, ainsi que l'apport en CO résultant, ont été identifiés pour la première fois. La variation saisonnière de la concentration en ozone troposphérique dans le sud de l'océan Indien a également été mise en évidence, ainsi que son lien avec les émissions de précurseurs d'ozone provenant des feux de biomasse se produisant en Afrique Australe et en Amérique Latine. L'analyse des données photométriques AERONET a permis d'établir une climatologie des caractéristiques optiques des aérosols à la verticale de la Réunion, qui apparaît comme étant un site relativement propre dont la troposphère est principalement affectée par les aérosols marins tout au long de l'année, et également par les aérosols de feu pendant la saison des feux australe. De plus, des campagnes de mesure avec lidar et photomètre embarqués à bord d'un navire sillonnant l'océan Indien austral a donné accès à l'évaluation de l'extension verticale et des propriétés optiques d'un panache d'aérosols de feux provenant principalement d'Amérique Latine et d'Afrique Australe, mais aussi d'Asie du sud-est. / This thesis focused on the southern Indian Ocean area and contributed to improve our scientific knowledge on the origin of polluted air masses, on their spatial distribution, on the relative contribution of the identified source regions to the measured pollutant loading, and on the optical properties of the encountered aerosols. The potential primary sources for CO throughout the south-western Indian Ocean troposphere are southern Africa and South America. A secondary potential contribution from Southeast Asia and Indonesia-Malaysia was identified in the upper troposphere, especially in July and August. The seasonal variation of tropospheric ozone concentration in the southern Indian Ocean is highlighted, and its link to wintertime long range transport of tropospheric ozone precursors emitted in biomass burning plumes from southern America and Africa is evidenced. The analysis of sun photometer measurements gave access to a climatology of the optical properties of aerosols in Reunion Island, showing this site can be considered as a clean site, mostly influenced by marine aerosols throughout the year, and also by biomass burning aerosols during the southern hemisphere biomass burning season. A unique data set of shipborne measurements has been collected with a dual Rayleigh-Mie lidar and a handheld sun photometer aboard a research vessel crossing the southern Indian Ocean, and the time evolution of the encountered marine and biomass burning aerosols extinction properties and vertical extension are documented.

Page generated in 0.0966 seconds