• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of Pre-ignition and Super-knock in Spark Ignition Engines

mubarak ali, mohammed jaasim 07 1900 (has links)
Advanced combustion concepts are required to meet the increasing global energy demand and stringent emission regulations imposed by the governments on automobile manufacturers. Improvement in efficiency and reduction in emissions can be achieved by downsizing the Spark Ignition (SI) engines. The operating range of SI engine is limited by occurrence of knock, pre-ignition and the following super-knock due to boosting of intake pressure, to account for the reduction of power, as a result of downsizing the engine. Super-knock, which represents high momentary pressure accompanied with pressure oscillations, is known to permanently damage the moving component of the engines. Therefore fundamental comprehensive understanding of the mechanism involved in pre-ignition and super-knock are required to design highly efficient spark ignition engines with lower emissions that can meet the increasing government regulations. \nThe thesis focuses on auto-ignition characteristics of endgas and the bulk mixture properties that favor transition of pre-ignition to super-knock. Direct numerical studies indicate that super-knock occurs to due to initiation of premature flame front that transition into detonation. In literature, many sources are reported to trigger pre-ignition. Due to the uncertainty of the information on the sources that trigger pre-ignition, it is extremely difficult to predict and control pre-ignition event in SI engines. Since the information on the source of pre-ignition is not available, the main focus of this work is to understand the physical and chemical mechanisms involved in super-knock, factors that influence super-knock and methods to predict super-knock. \n
Pre-ignition was initiated at known locations and crank angle using a hotspot of known size and strength. Different parametric cases were studied and the location and timing of pre-ignition initiation is found to be extremely important in determining the transition of pre-ignition event to super-knock. Pre-ignition increases the temperature of the endgas and the overall bulk mixture, that transitions the pre-ignition flame front to a detonation. The transition of the flame propagation mode from deflagration to detonation was investigated with different type of analysis methods and all results confirmed the transition of pre-ignition flame front to detonation that results in super- knock.
2

L’auto-inflammation dans le mécanisme de transition de régime de combustion de la déflagration vers la détonation / The Autoignition in the Mechanisms of Combustion Regime Transition from the Deflagration to the Detonation

Quintens, Hugo 26 June 2019 (has links)
Pour répondre aux défis environnementaux actuels, des solutions en rupture par rapport aux turbomachines existantes sont actuellement encours de développement. Elles s’appuient sur des cycles thermodynamiques plus efficients.L’objectif de ces travaux de thèse est d’étudier expérimentalement les mécanismes de transition de régime de combustion pour ce type d'applications en utilisant un surrogate de kérosène, le n-décane. Pour cela, une déflagration est initiée dans une enceinte fermée et comprime les gaz frais. La pression et la température de ces derniers augmentent jusqu’à atteindre les conditions propices à l’apparition de l’autoinflammation.3 régimes de combustion successifs sont caractérisés dans la chambre de combustion au moyen de diagnostics optiques rapides. Un premier dégagement de chaleur associé à la flamme froide pré-oxyde les gaz frais, il est suivi du dégagement de chaleur principal (Main Heat Release,MHR). Pour les températures initiales de mélange les plus élevées, une détonation est observée à la fin du processus. Deux chemins de transition différents sont mis en évidence : la transition Déflagration-Auto-inflammation (DAIT) et la transition Déflagration-Auto-inflammation-Détonation (DAIDT). La sensibilité des transitions de régime aux conditions initiales de pression, de température et de richesse a été caractérisée au moyen de plusieurs études paramétriques. Dans ce but, les conditions de température, de pression et de composition du mélange sont calculées aux instants d’apparition des différents fronts réactifs (flamme froide, MHR et détonation). Il a notamment été observé que les dégagements de chaleur successifs de l’auto-inflammation se déroulaient aux mêmes températures (740 K pour la flamme froide et 1050 K pour le MHR)quelles que soient les conditions initiales. L’étude s’est concentrée ensuite sur l’analyse d’un point de fonctionnement particulier. L’étude de ce point de fonctionnement, différents vitesses de front d’auto-inflammation ont été observées, mettant en évidence le mécanisme de SWACER lors de la transition.Un critère de transition de régime depuis l’auto-inflammation proposé de Zander et al., dans le cadre d’études numériques, a été testé dans notre configuration expérimentale. Un critère modifié a été développé en lui adjoignant la notion d’effets de compressibilité dans l’écoulement réactif. L’application de ce critère à l’ensemble des essais permet de prédire l’apparition de la détonation dans les conditions où 0 et 100 % de DAIDT sont observés. Les différents domaines de transition de régime ont également été positionnés sur le diagramme de Bradley (ξ, ϵ). Les modes de combustion prédits par le diagramme sont consistants avec ceux qui sont atteints dans la chambre.L’influence de la distribution initiale de température sur les modes de combustion atteignables dans la chambre a été étudiée. Trois topologies d’auto-inflammation ont été mises en évidence pour trois distributions de température dans la chambre. Ces topologies sont séparées en deux catégories, celles privilégiant une direction particulière lors de l’auto-inflammation séquentielle et celle présentant un comportement tridimensionnel.Les essais ayant un comportement tridimensionnel présentent une très forte propension à la DAIDT mais une propagation lente des fronts d’auto-inflammation. Dans ce cas, un autre mécanisme de transition vers la détonation est mis en évidence : l’auto-inflammation d’une poche homogène de gaz génère des ondes de choc et déclenchent des auto-inflammations successives pendant leur propagation. Le couplage choc/front réactif entraine la formation de la détonation.Différents mécanismes de transition vers la détonation ont été observés et étudiés sur une large plage de conditions de pression, température,richesse et gradient thermique. Les résultats obtenus permettront d’appuyer les études numériques réalisées sur le sujet, manquant jusque-là de données expérimentales en conditions académiques. / To meet the current environmental challenges, breakthrough solutions compared to existing turbomachines are currently under development.They rely on the use of more efficient thermodynamic cycles.The objective of this thesis is to study experimentally the mechanisms of transition of combustion regime using a kerosene surrogate, n-decane.For this purpose, a deflagration is initiated in a closed chamber and compresses the fresh gases. The pressure and the temperature of the endgas increase until reaching the conditions favorable to the appearance of the autoignition in the chamber.3 successive combustion regimes are characterized in the combustion chamber by means of fast optical diagnostics. A first heat release,associated with the cool flame phenomenon, pre-oxidizes the fresh gases, it is followed by the Main Heat Release (MHR). For the highest initial temperatures, a detonation is observed at the end of the process. Two different transition paths are highlighted: the Deflagration-Autoignition Transition (DAIT) and the Deflagration-Autoignition-Detonation Transition (DAIDT).The sensitivity of regime transitions to the initial conditions of pressure, temperature and mixture composition was characterized by means of several parametric studies. For this purpose, the conditions of temperature, pressure and composition of the mixture are calculated at the onset of the different reactive fronts (cool flame, MHR and detonation). In particular, it has been observed that the successive heat releases of theauto-ignition start at the same temperatures (740 K for the cool flame and 1050 K for the MHR) whatever the initial conditions. The study, then, focused on the analysis of a particular operating point. During the study of this operating point different self-ignition front velocities were observed, highlighting the mechanism of SWACER during the transition.A regime transition criterion proposed by Zander et al. based on numerical studies has been tested in our experimental setup. A modified criterion has been developed to take into account compressibility effects in the reactive flow. The application of this criterion to all the dataset makes possible to predict the appearance of the detonation under the conditions where 0 and 100% of DAIDT are observed. The different regime transition domains have also been positioned on the Bradley diagram (ξ, ε). The modes of combustion predicted by the diagram are consistent with those reached in the chamber.The influence of the initial temperature distribution on the combustion modes achievable in the chamber has been studied. Three topologies of autoignition have been demonstrated for three initial temperature distributions in the chamber. These topologies are separated into two categories, those favoring a particular direction during sequential self-ignition and that exhibiting a three-dimensional behavior.Three-dimensional tests show a very high propensity for DAIDT but a slow spread of autoignition fronts. In this case, another mechanism of transition to detonation is evidenced: the self-ignition of an homogeneous gas pocket generates shock waves and triggers successive autoinflammations during their propagation. The shock coupling / reactive front causes the formation of the detonation. Different transition mechanisms to detonation have been observed and studied over a wide range of pressure, temperature, equivalence ratio and thermal gradient conditions. The obtained results will be useful to support the numerical studies carried out on the subject, which lacks experimental data in academic conditions.
3

Simulation aux Grandes Échelles des combustions anormales dans les moteurs downsizés à allumage commandé / Large-Eddy Simulation of abnormal combustions in spark ignition engines

Robert, Anthony 27 June 2014 (has links)
Le moteur à allumage commandé fortement downsizé est une des solutions les plus prometteuses utilisée par les constructeurs automobiles pour augmenter le rendement et réduire les émissions de CO2. Cependant, les conditions thermodynamiques plus sévères rencontrées dans ces moteurs favorisent l’apparition de combustions anormales (cliquetis et rumble) qui sont difficiles à analyser expérimentalement vu les risques encourus par le moteur. La méthode Reynolds Averaged Navier-Stokes (RANS) s’est imposée depuis plusieurs années pour l’étude des moteurs à piston dans l’industrie, mais elle n’est pas la plus appropriée pour étudier des phénomènes locaux et sporadiques comme les combustions anormales qui n’affectent pas le cycle moyen simulé en RANS. Grâce à l’utilisation d’un code compressible LES et au développement d’une version améliorée des modèles ECFM-LES (Extended Coherent Flame Model) et TKI (Tabulated Kinetics of Ignition) qui permet un découplage total entre les taux de réaction liés à la propagation de la flamme et à l’auto-inflammation, ces travaux mettent en évidence pour la première fois la capacité de la LES à décrire le phénomène de cliquetis dans une configuration réaliste d’un moteur à allumage commandé. Contrairement aux études précédentes [S. Fontanesi and S. Paltrinieri and A. D’Adamo and G. Cantore and C. Rutland, SAE Int. J. Fuels Lubr., 2013-01-1082, pp. 98-118][G. Lecocq, S. Richard, J.-B. Michel, L. Vervisch, Proc. Combust. Inst. 33 (2011) 3105-3114], une étude quantitative du cliquetis est réalisée grâce à des post-traitements spécifiques et similaires pour les résultats expérimentaux et numériques. La LES est capable de prédire la variabilité de la pression cylindre, la fréquence mais également l’angle moyen d’apparition de l’auto-inflammation sur un balayage d’avance à l’allumage. Une analyse 3D démontre également que le cliquetis se déclenche à différents endroits, mais principalement dans la moitié de la chambre sous les soupapes d’échappement. De plus, l’intensité du cliquetis est proportionnelle à la masse de gaz frais brûlée en auto-inflammation pour les faibles intensités, alors qu’une croissance beaucoup plus forte est observée pour les intensités les plus élevées. Ceci suggère que des facteurs supplémentaires interviennent comme la localisation du cliquetis ou les interactions entre l’acoustique interne et l’auto-inflammation. L’utilisation d’un code LES compressible permet une visualisation directe de ces interactions mettant en évidence que les faibles intensités sont liées à des auto-inflammations locales sans couplage alors qu’une transition de la déflagration vers la détonation est possible en moteur automobile et correspond aux intensités les plus fortes. / Highly boosted spark ignition engines are more and more attractive for car manufacturers in terms of efficiency and CO2 emissions reduction. However, thermodynamic conditions encountered in these engines promote the occurrence of abnormal combustions like knock or super-knock, which are experimentally difficult to analyze due to the risks of engine damages. The Reynolds Averaged Navier-Stokes (RANS) method mainly used in industry for piston engines is not the most appropriate as knock does not always affect the mean cycle captured by RANS. Using an accurate LES compressible code and improved versions of ECFM-LES (Extended Coherent Flame Model) and TKI (Tabulated Kinetics of Ignition) models allowing a full uncoupling of flame propagation and auto-ignition reaction rates, this work demonstrates for the first time that LES is able to describe quantitatively knocking combustion in a realistic downsized SI engine configuration. Contrary to previous studies [S. Fontanesi and S. Paltrinieri and A. D’Adamo and G. Cantore and C. Rutland, SAE Int. J. Fuels Lubr., 2013-01-1082, pp. 98-118][G. Lecocq, S. Richard, J.-B. Michel, L. Vervisch, Proc. Combust. Inst. 33 (2011) 3105-3114], a quantified knock analysis is conducted based on a specific post-processing of both numerical and experimental data. LES is able to predict the in-cylinder pressure variability, the knock occurrence frequency and the mean knock onset crank angle for several spark timings. A 3D analysis also demonstrates that knock occurs at random locations, mainly at the exhaust valves side. Knock intensity is found proportional to the fresh gases mass burned by auto-ignition at low knock intensities, while an exponential increase at the highest intensities suggests the influence of additional factors like the knock location in the cylinder or complex behavior of knocking combustion. A direct LES study of acoustic and autoignition interactions is then achieved. The LES visualizations allows showing that low knock intensities are only linked to local autoignition, but a deflagration to detonation transition occurs in such engine operating conditions and is responsible for the highest knock intensities.

Page generated in 0.0454 seconds