• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 10
  • 7
  • 4
  • 3
  • 1
  • Tagged with
  • 132
  • 57
  • 37
  • 33
  • 30
  • 20
  • 19
  • 18
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Applications of Dispersed Phase Flows Through Porous Media

Zhou, Jianyu January 2018 (has links)
No description available.
12

Volume of Fluid Simulations for Droplet Impact on Dry and Wetted Hydrophobic and Superhydrophobic Surfaces

Burtnett, Emily Nicole 11 August 2012 (has links)
An aircraft may experience inlight ice accretion and corresponding reductions in performance and control when the vehicle encounters clouds of super-cooled water droplets. The EADS-IW Surface Engineering Group is investigating passive anti-icing possibilities, such as functional and ice phobic coatings. Ice-resistant coatings require investigating droplet impact on dry surfaces and wet films, including microscopic effects such as droplet splashing. To investigate droplet impacts, a volume of fluid (VOF) flow solver was used for droplets impacting dry and wetted hydrophobic and superhydrophobic surfaces, focusing on meso-scale simulations. The effects of structured, micro-scale surface roughness and the effects of a thin wet film on the surface, corresponding to a saturated surface under high humidity conditions, were investigated. Axisymmetric domains produced acceptable results for smooth, dry surfaces. It was determined that in order to properly predict behavior of droplets impacting surfaces with structured micro-scale roughness, three-dimensional simulations are recommended.
13

Drop Motion on Superhydrophobic Fiber Mats

Manzo, Gabriel M. January 2011 (has links)
No description available.
14

Control and Characterization of Textured, Hydrophobic Ionomer Surfaces

Wang, Xueyuan 20 July 2012 (has links)
No description available.
15

Quantitative and Qualitative Results from Droplet Impingement Experiments on Superhydrophobic Surfaces with Micro-Ribs for Three Liquid Types

Pearson, John T. 09 August 2010 (has links) (PDF)
Experiments were performed in which liquid droplets were videographically recorded impacting horizontal superhydrophobic surfaces. The superhydrophobic surfaces were micropatterned with alternating ribs and cavities and coated with a hydrophobic coating. The following surface types were also tested for comparison: smooth uncoated, micropatterned uncoated, and smooth coated surfaces. Three liquid types were used: pure water, ethanol, and a 50/50 water/glycerine mixture. Acquired data demonstrated that the maximum droplet spread diameter exhibited a greater Weber number dependence than that previously reported in the literature. The time delays between impact and maximum spread and between impact and ejection of a vertical jet were characterized, and it was found that experiments with hydrophilic surface behavior follow somewhat different trends than those with hydrophobic behavior, and that there are modest differences between superhydrophobic and hydrophobic surfaces. When analyzing the velocity of the issuing vertical jet, a region of micro-jets was observed with velocities that, under certain conditions, can exceed 15 times the impact velocity. The experimental data acquired were also compared to two recent models from the literature and it was determined that the models do not adequately account for surface anisotropy or apparent slip at the solid-liquid interface. The experiments also showed that instabilities resulting in fingering are dependent upon surface and fluid type, but not contact angle. The onset of peripheral splashing was observed, in general, to occur at a lower Weber number as contact angle increased for the differing surfaces. For surfaces with rib and cavity features, the droplet spread and retraction were generally observed to be asymmetric with spread and retraction faster along the length of the ribs. The occurrence of two-pronged and oscillating jets for water/glycerine tests was also observed for all patterned surfaces. Lastly, an interesting spread pattern with four liquid droplets clustered at about 30° from the perpendicular direction was observed for all fluid types on patterned surfaces for high Weber numbers.
16

Thermal Transport to Sessile Water Droplets on Heated Superhydrophobic Surfaces of Varying Cavity Fraction

Hays, Robb C. 27 August 2013 (has links) (PDF)
The hydrophobicity of a surface is defined as the degree to which it repels water molecules, and the internal contact angle that the droplet makes with the surface is a measure of the hydrophobicity. Contact angles less than 90° occur on hydrophilic surfaces, while contact angles greater than 90° occur on hydrophobic surfaces. If a surface's contact angle is greater than 120° the surface is commonly defined as superhydrophobic (SH). Superhydrophobicity is accomplished through a combination of microscale surface roughness and water repellant surface chemistry. The roughness creates cavities, or pockets, of vapor underneath the droplet which act to increase the effects of surface tension and lead to increased contact angles. The cavity fraction, F_c, of a surface is a measure of the surface roughness and is defined as the ratio of the projected cavity area to the projected total area of the surface. This thesis investigates the effects of varying cavity fraction, F_c, and substrate temperature, T_s, on heat transfer to evaporating water droplets. Distilled water droplets of nominally 3 mm in diameter were placed on heated SH substrates of varying F_c (0.5, 0.8, and 0.95). A smooth hydrophobic surface was included in the experiments for comparative purposes. The temperature of the surface was held constant at temperatures ranging from 60 to 230°C while the droplet evaporated. Measurements of droplet temperature and size were taken throughout the evaporation process using CCD and infrared camera images. These images were analyzed to yield heat transfer rates for the various surface types and surface temperatures studied. At temperatures below the saturation point of water, average droplet temperatures and heat transfer rates decrease with increasing cavity fraction. Differences in heat transfer rate between substrates increase with substrate temperature. Nusselt number decreases as cavity fraction is increased. Cavity fractions less than about 0.5 show only modest differences in Nusselt number between surfaces. As cavity fraction approaches unity, differences in Nusselt number become amplified between surfaces. At temperatures above the saturation point of water, boiling behavior on SH surfaces deviates dramatically from that of smooth untextured surfaces. Average heat transfer rates decrease with increasing cavity fraction. Nucleate boiling is delayed to highter superheats than normal or is not observed. The Liedenfrost point is advanced to lower superheats as cavity fraction is increased. Similar heat transfer rates are observed beyond the Leidenfrost point.
17

Thermal Transport to Impinging Droplets on Superhydrophobic Surfaces

Burnett, Jonathan C. 08 December 2021 (has links)
An analytical model is developed to quantify the heat transfer to droplets impinging on heated superhydrophobic (SH) surfaces. Integral analysis is used to incorporate an apparent temperature jump at the superhydrophobic surface as a boundary condition. This Thesis considers the scenario of both isotropic and anisotropic slip, as would be realized on post-cavity style and rib-cavity style SH surfaces. This thermal model is combined with a hydrodynamic model which incorporates velocity slip at the surface. Use of the two models allows determination of the overall cooling effectiveness, a metric outlined in contemporary work. The effect of varying velocity slip and temperature jump is determined for impact Weber numbers ranging from 20 to 150 and surface temperatures ranging from 60 to 100°C. The model results are compared to experiments and good agreement is shown. Heat transfer to a drop impacting superhydrophobic surfaces is decreased when compared to conventional surfaces. A correlation function for the total heat transfer (cooling effectiveness) as a function of relevant parameters is found for isotropic surfaces with a good fit. Anisotropic rib-cavity surfaces are compared to isotropic surfaces to explore the impact of anisotropic slip on the cooling effectiveness, with similar trends seen to that for isotropic surfaces. It's determined that anisotropic surfaces can be modeled with minimal error as an isotropic surface with a temperature jump length equal to the anisotropic surface's average temperature jump length.
18

Separation of Emulsified Water from Ultra Low Sulfur Diesel

Patel, Sarfaraz Usman 27 August 2013 (has links)
No description available.
19

Droplet Impact on Dry, Superhydrophobic Surfaces with Micro-Scale Roughness Elements

Boufous, Nadine 09 December 2016 (has links)
Most aircraft accidents are caused by technical problems or weather-related issues. One cause of weather-related incidents is inlight icing, which can induce negative performance characteristics and endanger the operation of an airplane. Various researchers investigating the problem of inlight icing have proposed ice-phobic coatings as one viable solution. For this purpose, it is critical to study the behavior of a droplet impact on different types of surfaces. As an alternative to physical testing, three-dimensional numerical simulation using computational fluid dynamics offers a promising strategy for evaluating the effects of surface characteristics. Using the volume of fluid method, three simulations of high-speed droplet impact on superhydrophobic surfaces with and without micro-scale roughness elements, were generated. The simulations showed that, for the roughness configurations considered, the superhydrophobic surfaces with micro-scale roughness elements were significantly less effective at repelling the droplet than the smooth superhydrophobic surfaces.
20

Pressure and thermal effects on superhydrophobic friction reduction in a microchannel flow

Kim, Tae Jin, active 21st century. 22 September 2014 (has links)
As the fluidic devices are miniaturized to improve portability, the friction of the microchannel becomes intrinsically high and a high pumping power will be required to drive the fluid. Since the pumping power delivered by portable devices is limited, one method to reduce this is to render the surface to become slippery. This can be achieved by roughening up the microchannel wall and form a bed of air pockets between the roughness elements, which is known as the superhydrophobic Cassie-Baxter state. While the study on superhydrophobic microchannels are focused mainly in maximizing the friction reduction effects and maintaining the stability of the air pockets, less attention has been given to characterizing the microchannel friction under a metastable state, where partial flooding of the micro-textures may be present, and under heated conditions, where the air pockets are trapped between the micro-textures. In order to quantify the frictional characteristics, microchannels with micron-sized trenches on the side walls were fabricated and tested under varying inlet pressures and heating conditions. By measuring the hydrodynamic resistance and comparing with numerical simulations, results suggest that (1) the air-water interface behaves close to a no-slip boundary condition, (2) friction becomes insensitive to the wetting degree once the micro-trenches become highly wetting, (3) the fully wetted micro-trench may be beneficial over the de-wetted ones in order to achieve friction reduction effects and (4) heating the micro-trenches to induce a highly de-wetting state may actually be detrimental to the microchannel flow due the excessive growth of the air layer. As part of the future work to characterize heat transfer in superhydrophobic microchannels, a rectangular microchannel with microheaters embedded close to the side walls was fabricated and the corresponding heat transfer rates were measured through dual fluorescence thermometry. Results suggested that significant heat is lost through the environment despite the high thermal resistance of the microchannel material. An extra insulation is suggested prior to characterizing the convective heat transfer coefficients in the superhydrophobic microchannel flow. / text

Page generated in 0.0543 seconds