1 |
Explorando superpixels para a segmentação semiautomática de imagens médicas para recuperação por conteúdo / Exploring superpixels to semi automatic medical image segmentation for content-based image retrievalBarbieri, Paulo Duarte 03 June 2016 (has links)
Nesse trabalho foi desenvolvido o método VBSeg, um método de segmentação semiautomático de corpos vertebrais, que utiliza superpixels para aumentar a eficiência de técnicas de segmentação de imagens já estabelecidas na literatura, sem perder qualidade do resultado final. Experimentos mostraram que o uso de superpixels melhorou o resultado da segmentação dos corpos vertebrais em até 18%, além de aumentar a eficiência desses métodos, deixando a execução dos algoritmos de segmentação pelo menos 38% mais rápida. Além disso, o método desenvolvido possui baixa dependência do nível de especialidade do usuário e apresentou resultados comparáveis ao método Watershed, um método bem estabelecido na área de segmentação de imagens. Contudo, o método VBSeg segmentou 100% dos corpos vertebrais das imagens analisadas, enquanto que o método Watershed deixou de segmentar 44% dos corpos. / This work presents the development of a semiautomatic vertebral body segmentation method VBSeg, which uses superpixels to increase effi- ciency of well established image segmentation methods without losing quality. Experiments have shown motivating results with superpixels im- proving vertebral bodies segmentation in 18% and making segmentation algorithms at least 38% faster. Furthermore, our VBSeg method has low dependency on the level of expertise and got similar results to Watershed method, a well-established image segmentation method. However, VB- Seg method was able to segment 100% of the analyzed vertebral bodies while Watershed method missed 44% of those.
|
2 |
Graph based approaches for image segmentation and object tracking / Méthodes de graphe pour la segmentation d'images et le suivi d'objets dynamiquesWang, Xiaofang 27 March 2015 (has links)
Cette thèse est proposée en deux parties. Une première partie se concentre sur la segmentation d’image. C’est en effet un problème fondamental pour la vision par ordinateur. En particulier, la segmentation non supervisée d’images est un élément important dans de nombreux algorithmes de haut niveau et de systèmes d’application. Dans cette thèse, nous proposons trois méthodes qui utilisent la segmentation d’images se basant sur différentes méthodes de graphes qui se révèlent être des outils puissants permettant de résoudre ces problèmes. Nous proposons dans un premier temps de développer une nouvelle méthode originale de construction de graphe. Nous analysons également différentes méthodes similaires ainsi que l’influence de l’utilisation de divers descripteurs. Le type de graphe proposé, appelé graphe local/global, encode de manière adaptative les informations sur la structure locale et globale de l’image. De plus, nous réalisons un groupement global en utilisant une représentation parcimonieuse des caractéristiques des superpixels sur le dictionnaire de toutes les caractéristiques en résolvant un problème de minimisation l0. De nombreuses expériences sont menées par la suite sur la base de données <Berkeley Segmentation>, et la méthode proposée est comparée avec des algorithmes classiques de segmentation. Les résultats démontrent que notre méthode peut générer des partitions visuellement significatives, mais aussi que des résultats quantitatifs très compétitifs sont obtenus en comparaison des algorithmes usuels. Dans un deuxième temps, nous proposons de travailler sur une méthode reposant sur un graphe d’affinité discriminant, qui joue un rôle essentiel dans la segmentation d’image. Un nouveau descripteur, appelé patch pondéré par couleur, est développé pour calculer le poids des arcs du graphe d’affinité. Cette nouvelle fonctionnalité est en mesure d’intégrer simultanément l’information sur la couleur et le voisinage en représentant les pixels avec des patchs de couleur. De plus, nous affectons à chaque pixel une pondération à la fois local et globale de manière adaptative afin d’atténuer l’effet trop lisse lié à l’utilisation de patchs. Des expériences approfondies montrent que notre méthode est compétitive par rapport aux autres méthodes standards à partir de plusieurs paramètres d’évaluation. Finalement, nous proposons une méthode qui combine superpixels, représentation parcimonieuse, et une nouvelle caractéristisation de mi-niveau pour décrire les superpixels. Le nouvelle caractérisation de mi-niveau contient non seulement les mêmes informations que les caractéristiques initiales de bas niveau, mais contient également des informations contextuelles supplémentaires. Nous validons la caractéristisation de mi-niveau proposée sur l’ensemble de données MSRC et les résultats de segmentation montrent des améliorations à la fois qualitatives et quantitatives par rapport aux autres méthodes standards. Une deuxième partie se concentre sur le suivi d’objets multiples. C’est un domaine de recherche très actif, qui est d’une importance majeure pour un grand nombre d’applications, par exemple la vidéo-surveillance de piétons ou de véhicules pour des raisons de sécurité ou l’identification de motifs de mouvements animaliers. / Image segmentation is a fundamental problem in computer vision. In particular, unsupervised image segmentation is an important component in many high-level algorithms and practical vision systems. In this dissertation, we propose three methods that approach image segmentation from different angles of graph based methods and are proved powerful to address these problems. Our first method develops an original graph construction method. We also analyze different types of graph construction method as well as the influence of various feature descriptors. The proposed graph, called a local/global graph, encodes adaptively the local and global image structure information. In addition, we realize global grouping using a sparse representation of superpixels’ features over the dictionary of all features by solving a l0-minimization problem. Extensive experiments are conducted on the Berkeley Segmentation Database, and the proposed method is compared with classical benchmark algorithms. The results demonstrate that our method can generate visually meaningful partitions, but also that very competitive quantitative results are achieved compared with state-of-the-art algorithms. Our second method derives a discriminative affinity graph that plays an essential role in graph-based image segmentation. A new feature descriptor, called weighted color patch, is developed to compute the weight of edges in an affinity graph. This new feature is able to incorporate both color and neighborhood information by representing pixels with color patches. Furthermore, we assign both local and global weights adaptively for each pixel in a patch in order to alleviate the over-smooth effect of using patches. The extensive experiments show that our method is competitive compared to the other standard methods with multiple evaluation metrics. The third approach combines superpixels, sparse representation, and a new midlevel feature to describe superpixels. The new mid-level feature not only carries the same information as the initial low-level features, but also carries additional contextual cue. We validate the proposed mid-level feature framework on the MSRC dataset, and the segmented results show improvements from both qualitative and quantitative viewpoints compared with other state-of-the-art methods. Multi-target tracking is an intensively studied area of research and is valuable for a large amount of applications, e.g. video surveillance of pedestrians or vehicles motions for sake of security, or identification of the motion pattern of animals or biological/synthetic particles to infer information about the underlying mechanisms. We propose a detect-then-track framework to track massive colloids’ motion paths in active suspension system. First, a region based level set method is adopted to segment all colloids from long-term videos subject to intensity inhomogeneity. Moreover, the circular Hough transform further refines the segmentation to obtain colloid individually. Second, we propose to recover all colloids’ trajectories simultaneously, which is a global optimal problem that can be solved efficiently with optimal algorithms based on min-cost/max flow. We evaluate the proposed framework on a real benchmark with annotations on 9 different videos. Extensive experiments show that the proposed framework outperforms standard methods with large margin.
|
3 |
Explorando superpixels para a segmentação semiautomática de imagens médicas para recuperação por conteúdo / Exploring superpixels to semi automatic medical image segmentation for content-based image retrievalPaulo Duarte Barbieri 03 June 2016 (has links)
Nesse trabalho foi desenvolvido o método VBSeg, um método de segmentação semiautomático de corpos vertebrais, que utiliza superpixels para aumentar a eficiência de técnicas de segmentação de imagens já estabelecidas na literatura, sem perder qualidade do resultado final. Experimentos mostraram que o uso de superpixels melhorou o resultado da segmentação dos corpos vertebrais em até 18%, além de aumentar a eficiência desses métodos, deixando a execução dos algoritmos de segmentação pelo menos 38% mais rápida. Além disso, o método desenvolvido possui baixa dependência do nível de especialidade do usuário e apresentou resultados comparáveis ao método Watershed, um método bem estabelecido na área de segmentação de imagens. Contudo, o método VBSeg segmentou 100% dos corpos vertebrais das imagens analisadas, enquanto que o método Watershed deixou de segmentar 44% dos corpos. / This work presents the development of a semiautomatic vertebral body segmentation method VBSeg, which uses superpixels to increase effi- ciency of well established image segmentation methods without losing quality. Experiments have shown motivating results with superpixels im- proving vertebral bodies segmentation in 18% and making segmentation algorithms at least 38% faster. Furthermore, our VBSeg method has low dependency on the level of expertise and got similar results to Watershed method, a well-established image segmentation method. However, VB- Seg method was able to segment 100% of the analyzed vertebral bodies while Watershed method missed 44% of those.
|
4 |
Low and Mid-level Shape Priors for Image SegmentationLevinshtein, Alex 15 February 2011 (has links)
Perceptual grouping is essential to manage the complexity of real world scenes. We explore bottom-up grouping at three different levels. Starting from low-level grouping, we propose a novel method for oversegmenting an image into compact superpixels, reducing the complexity of many high-level tasks. Unlike most low-level segmentation techniques, our geometric flow formulation enables us to impose additional compactness constraints, resulting in a fast method with minimal undersegmentation. Our subsequent work utilizes compact superpixels to detect two important mid-level shape regularities, closure and symmetry. Unlike the majority of closure detection approaches, we transform the closure detection problem into one of finding a subset of superpixels whose collective boundary has strong edge support in the image. Building on superpixels, we define a closure cost which is a ratio of a novel learned boundary gap measure to area, and show how it can be globally minimized to recover a small set of promising shape hypotheses. In our final contribution, motivated by the success of shape skeletons, we recover and group symmetric parts without assuming prior figure-ground segmentation. Further exploiting superpixel compactness, superpixels are this time used as an approximation to deformable maximal discs that comprise a medial axis. A learned measure of affinity between neighboring superpixels and between symmetric parts enables the purely bottom-up recovery of a skeleton-like structure, facilitating indexing and generic object recognition in complex real images.
|
5 |
Low and Mid-level Shape Priors for Image SegmentationLevinshtein, Alex 15 February 2011 (has links)
Perceptual grouping is essential to manage the complexity of real world scenes. We explore bottom-up grouping at three different levels. Starting from low-level grouping, we propose a novel method for oversegmenting an image into compact superpixels, reducing the complexity of many high-level tasks. Unlike most low-level segmentation techniques, our geometric flow formulation enables us to impose additional compactness constraints, resulting in a fast method with minimal undersegmentation. Our subsequent work utilizes compact superpixels to detect two important mid-level shape regularities, closure and symmetry. Unlike the majority of closure detection approaches, we transform the closure detection problem into one of finding a subset of superpixels whose collective boundary has strong edge support in the image. Building on superpixels, we define a closure cost which is a ratio of a novel learned boundary gap measure to area, and show how it can be globally minimized to recover a small set of promising shape hypotheses. In our final contribution, motivated by the success of shape skeletons, we recover and group symmetric parts without assuming prior figure-ground segmentation. Further exploiting superpixel compactness, superpixels are this time used as an approximation to deformable maximal discs that comprise a medial axis. A learned measure of affinity between neighboring superpixels and between symmetric parts enables the purely bottom-up recovery of a skeleton-like structure, facilitating indexing and generic object recognition in complex real images.
|
6 |
Classification of terrain using superpixel segmentation and supervised learning / Klassificering av terräng med superpixelsegmentering och övervakad inlärningRingqvist, Sanna January 2014 (has links)
The usage of 3D-modeling is expanding rapidly. Modeling from aerial imagery has become very popular due to its increasing number of both civilian and mili- tary applications like urban planning, navigation and target acquisition. This master thesis project was carried out at Vricon Systems at SAAB. The Vricon system produces high resolution geospatial 3D data based on aerial imagery from manned aircrafts, unmanned aerial vehicles (UAV) and satellites. The aim of this work was to investigate to what degree superpixel segmentation and supervised learning can be applied to a terrain classification problem using imagery and digital surface models (dsm). The aim was also to investigate how the height information from the digital surface model may contribute compared to the information from the grayscale values. The goal was to identify buildings, trees and ground. Another task was to evaluate existing methods, and compare results. The approach for solving the stated goal was divided into several parts. The first part was to segment the image using superpixel segmentation, after that features were extracted. Then the classifiers were created and trained and finally the classifiers were evaluated. The classification method that obtained the best results in this thesis had approx- imately 90 % correctly labeled superpixels. The result was equal, if not better, compared to other solutions available on the market.
|
7 |
Phenotyping cellular motionZhou, Felix January 2017 (has links)
In the development of multicellular organisms, tissue development and homeostasis require coordinated cellular motion. For example, in conditions such as wound healing, immune and epithelial cells need to proliferate and migrate. Deregulation of key signalling pathways in pathological conditions causes alterations in cellular motion properties that are critical for disease development and progression, in cancer it leads to invasion and metastasis. Consequently there is strong interest in identifying factors, including drugs that affect the motion and interactions of cells in disease using experimental models suitable for high-content screening. There are two main modes of cell migration; individual and collective migration. Currently analysis tools for robust, sensitive and comprehensive motion characterisation in varying experimental conditions for large extended timelapse acquisitions that jointly considers both modes are limited. We have developed a systematic motion analysis framework, Motion Sensing Superpixels (MOSES) to quantitatively capture cellular motion in timelapse microscopy videos suitable for high-content screening. MOSES builds upon established computer vision approaches to deliver a minimal parameter, robust algorithm that can i) extract reliable phenomena-relevant motion metrics, ii) discover spatiotemporal salient motion patterns and iii) facilitate unbiased analysis with little prior knowledge through unique motion 'signatures'. The framework was validated by application to numerous datasets including YouTube videos, zebrafish immunosurveillance and Drosophila embryo development. We demonstrate two extended applications; the analysis of interactions between two epithelial populations in 2D culture using cell lines of the squamous and columnar epithelia from human normal esophagus, Barrett's esophagus and esophageal adenocarcinoma and the automatic monitoring of 3D organoid culture growth captured through label-free phase contrast microscopy. MOSES found unique boundary formation between squamous and columnar cells and could measure subtle changes in boundary formation due to external stimuli. MOSES automatically segments the motion and shape of multiple organoids even if present in the same field of view. Automated analysis of intestinal organoid branching following treatment agrees with independent RNA-seq results.
|
8 |
Segmentation interactive multiclasse d'images par classification de superpixels et optimisation dans un graphe de facteurs / Interactive multi-class image segmentation using superpixel classification and factor graph-based optimisationMathieu, Bérangère 15 November 2017 (has links)
La segmentation est l'un des principaux thèmes du domaine de l'analyse d'images. Segmenter une image consiste à trouver une partition constituée de régions, c'est-à-dire d'ensembles de pixels connexes homogènes selon un critère choisi. L'objectif de la segmentation consiste à obtenir des régions correspondant aux objets ou aux parties des objets qui sont présents dans l'image et dont la nature dépend de l'application visée. Même s'il peut être très fastidieux, un tel découpage de l'image peut être facilement obtenu par un être humain. Il n'en est pas de même quand il s'agit de créer un programme informatique dont l'objectif est de segmenter les images de manière entièrement automatique. La segmentation interactive est une approche semi-automatique où l'utilisateur guide la segmentation d'une image en donnant des indications. Les méthodes qui s'inscrivent dans cette approche se divisent en deux catégories en fonction de ce qui est recherché : les contours ou les régions. Les méthodes qui recherchent des contours permettent d'extraire un unique objet correspondant à une région sans trou. L'utilisateur vient guider la méthode en lui indiquant quelques points sur le contour de l'objet. L'algorithme se charge de relier chacun des points par une courbe qui respecte les caractéristiques de l'image (les pixels de part et d'autre de la courbe sont aussi dissemblables que possible), les indications données par l'utilisateur (la courbe passe par chacun des points désignés) et quelques propriétés intrinsèques (les courbes régulières sont favorisées). Les méthodes qui recherchent les régions groupent les pixels de l'image en des ensembles, de manière à maximiser la similarité en leur sein et la dissemblance entre les différents ensembles. Chaque ensemble correspond à une ou plusieurs composantes connexes et peut contenir des trous. L'utilisateur guide la méthode en traçant des traits de couleur qui désignent quelques pixels appartenant à chacun des ensembles. Si la majorité des méthodes ont été conçues pour extraire un objet principal du fond, les travaux menés durant la dernière décennie ont permis de proposer des méthodes dites multiclasses, capables de produire une partition de l'image en un nombre arbitraire d'ensembles. La contribution principale de ce travail de recherche est la conception d'une nouvelle méthode de segmentation interactive multiclasse par recherche des régions. Elle repose sur la modélisation du problème comme la minimisation d'une fonction de coût pouvant être représentée par un graphe de facteurs. Elle intègre une méthode de classification par apprentissage supervisé assurant l'adéquation entre la segmentation produite et les indications données par l'utilisateur, l'utilisation d'un nouveau terme de régularisation et la réalisation d'un prétraitement consistant à regrouper les pixels en petites régions cohérentes : les superpixels. L'utilisation d'une méthode de sur-segmentation produisant des superpixels est une étape clé de la méthode que nous proposons : elle réduit considérablement la complexité algorithmique et permet de traiter des images contenant plusieurs millions de pixels, tout en garantissant un temps interactif. La seconde contribution de ce travail est une évaluation des algorithmes permettant de grouper les pixels en superpixels, à partir d'un nouvel ensemble de données de référence que nous mettons à disposition et dont la particularité est de contenir des images de tailles différentes : de quelques milliers à plusieurs millions de pixels. Cette étude nous a également permis de concevoir et d'évaluer une nouvelle méthode de production de superpixels. / Image segmentation is one of the main research topics in image analysis. It is the task of researching a partition into regions, i.e., into sets of connected pixels, meeting a given uniformity criterion. The goal of image segmentation is to find regions corresponding to the objects or the object parts appearing in the image. The choice of what objects are relevant depends on the application context. Manually locating these objects is a tedious but quite simple task. Designing an automatic algorithm able to achieve the same result is, on the contrary, a difficult problem. Interactive segmentation methods are semi-automatic approaches where a user guide the search of a specific segmentation of an image by giving some indications. There are two kinds of methods : boundary-based and region-based interactive segmentation methods. Boundary-based methods extract a single object corresponding to a unique region without any holes. The user guides the method by selecting some boundary points of the object. The algorithm search for a curve linking all the points given by the user, following the boundary of the object and having some intrinsic properties (regular curves are encouraged). Region-based methods group the pixels of an image into sets, by maximizing the similarity of pixels inside each set and the dissimilarity between pixels belonging to different sets. Each set can be composed of one or several connected components and can contain holes. The user guides the method by drawing colored strokes, giving, for each set, some pixels belonging to it. If the majority of region-based methods extract a single object from the background, some algorithms, proposed during the last decade, are able to solve multi-class interactive segmentation problems, i.e., to extract more than two sets of pixels. The main contribution of this work is the design of a new multi-class interactive segmentation method. This algorithm is based on the minimization of a cost function that can be represented by a factor graph. It integrates a supervised learning classification method checking that the produced segmentation is consistent with the indications given by the user, a new regularization term, and a preprocessing step grouping pixels into small homogeneous regions called superpixels. The use of an over-segmentation method to produce these superpixels is a key step in the proposed interactive segmentation method : it significantly reduces the computational complexity and handles the segmentation of images containing several millions of pixels, by keeping the execution time small enough to ensure comfortable use of the method. The second contribution of our work is an evaluation of over-segmentation algorithms. We provide a new dataset, with images of different sizes with a majority of big images. This review has also allowed us to design a new over-segmentation algorithm and to evaluate it.
|
9 |
Compréhension de scènes urbaines par combinaison d'information 2D/3D / Urban scenes understanding by combining 2D/3D informationBauda, Marie-Anne 13 June 2016 (has links)
Cette thèse traite du problème de segmentation sémantique d'une séquence d'images calibrées acquises dans un environnement urbain. Ce problème consiste, plus précisément, à partitionner chaque image en régions représentant les objets de la scène (façades, routes, etc.). Ainsi, à chaque région est associée une étiquette sémantique. Dans notre approche, l'étiquetage s'opère via des primitives visuelles de niveau intermédiaire appelés super-pixels, lesquels regroupent des pixels similaires au sens de différents critères proposés dans la littérature, qu'ils soient photométriques (s'appuyant sur les couleurs) ou géométriques (limitant la taille des super-pixels formés). Contrairement à l'état de l'art, où les travaux récents traitant le même problème s'appuient en entrée sur une sur-segmentation initiale sans la remettre en cause, notre idée est de proposer, dans un contexte multi-vues, une nouvelle approche de constructeur de superpixels s'appuyant sur une analyse tridimensionnelle de la scène et, en particulier, de ses structures planes. Pour construire de «meilleurs» superpixels, une mesure de planéité locale, qui quantifie à quel point la zone traitée de l'image correspond à une surface plane de la scène, est introduite. Cette mesure est évaluée à partir d'une rectification homographique entre deux images proches, induites par un plan candidat au support des points 3D associés à la zone traitée. Nous analysons l'apport de la mesure UQI (Universal Quality Image) et montrons qu'elle se compare favorablement aux autres métriques qui ont le potentiel de détecter des structures planes. On introduit ensuite un nouvel algorithme de construction de super-pixels, fondé sur l'algorithme SLIC (Simple Linear Iterative Clustering) dont le principe est de regrouper les plus proches voisins au sens d'une distance fusionnant similarités en couleur et en distance, et qui intègre cette mesure de planéité. Ainsi la sur-segmentation obtenue, couplée à la cohérence interimages provenant de la validation de la contrainte de planéité locale de la scène, permet d'attribuer une étiquette à chaque entité et d'obtenir ainsi une segmentation sémantique qui partitionne l'image en objets plans. / This thesis deals with the semantic segmentation problem of a calibrated sequence of images acquired in an urban environment. The problem is, specifically, to partition each image into regions representing the objects in the scene such as facades, roads, etc. Thus, each region is associated with a semantic tag. In our approach, the labelling is done through mid-level visual features called super-pixels, which are groups of similar pixels within the meaning of some criteria proposed in research such as photometric criteria (based on colour) or geometrical criteria thus limiting the size of super-pixel formed. Unlike the state of the art, where recent work addressing the same problem are based on an initial over-segmentation input without calling it into question, our idea is to offer, in a multi-view environment, another super-pixel constructor approach based on a three-dimensional scene analysis and, in particular, an analysis of its planar structures. In order to construct "better" super-pixels, a local flatness measure is introduced which quantifies at which point the zone of the image in question corresponds to a planar surface of the scene. This measure is assessed from the homographic correction between two close images, induced by a candidate plan as support to the 3D points associated with the area concerned. We analyze the contribution of the UQI measure (Universal Image Quality) and demonstrate that it compares favorably with other metrics which have the potential to detect planar structures. Subsequently we introduce a new superpixel construction algorithm based on the SLIC (Simple Linear Iterative Clustering) algorithm whose principle is to group the nearest neighbors in terms of a distance merging similarities in colour and distance, and which includes this local planarity measure. Hence the over-segmentation obtained, coupled with the inter-image coherence as a result of the validation of the local flatness constraint related to the scene, allows assigning a label to each entity and obtaining in this way a semantic segmentation which divides the image into planar objects.
|
10 |
Waterpixels et Leur Application à l'Apprentissage Statistique de la Segmentation / Waterpixels and their Application to Image Segmentation LearningMachairas, Vaïa 16 December 2016 (has links)
L’objectif de ces travaux est de fournir une méthode de segmentation sémantique qui soit générale et automatique, c’est-à-dire une méthode qui puisse s’adapter par elle-même à tout type de base d’images, afin d’être utilisée directement par les non experts en traitement d’image, comme les biologistes par exemple. Pour cela, nous proposons d’utiliser la classification de pixel, une approche classique d’apprentissage supervisé, où l’objectif est d’attribuer à chaque pixel l’étiquette de l’objet auquel il appartient. Les descripteurs des pixels à classer sont souvent calculés sur des supports fixes, par exemple une fenêtre centrée sur chaque pixel, ce qui conduit à des erreurs de classification, notamment au niveau des contours d’objets. Nous nous intéressons donc à un autre support, plus large que le pixel et s’adaptant au contenu de l’image: le superpixel. Les superpixels sont des régions homogènes et plutôt régulières, issues d’une segmentation de bas niveau. Nous proposons une nouvelle façon de les générer grâce à la ligne de partage des eaux, les waterpixels, méthode rapide, performante et facile à prendre en main par l’utilisateur. Ces superpixels sont ensuite utilisés dans la chaîne de classification, soit à la place des pixels à classer, soit comme support pertinent pour calculer les descripteurs, appelés SAF (Superpixel-Adaptive Features). Cette seconde approche constitue une méthode générale de segmentation dont la pertinence est vérifiée qualitativement et quantitativement sur trois bases d’images provenant du milieu biomédical. / In this work, we would like to provide a general method for automatic semantic segmentation, which could adapt itself to any image database in order to be directly used by non-experts in image analysis (such as biologists). To address this problem, we first propose to use pixel classification, a classic approach based on supervised learning, where the aim is to assign to each pixel the label of the object it belongs to. Features describing each pixel properties, and which are used to determine the class label, are often computed on a fixed-shape support (such as a centered window), which leads, in particular, to misclassifcations on object contours. Therefore, we consider another support which is wider than the pixel itself and adapts to the image content: the superpixel. Superpixels are homogeneous and rather regular regions resulting from a low-level segmentation. We propose a new superpixel generation method based on the watershed, the waterpixels, which are efficient, fast to compute and easy to handle by the user. They are then inserted in the classification pipeline, either in replacement of pixels to be classified, or as pertinent supports to compute the features, called Superpixel-Adaptive Features (SAF). This second approach constitutes a general segmentation method whose pertinence is qualitatively and quantitatively highlighted on three databases from the biological field.
|
Page generated in 0.0574 seconds