• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • Tagged with
  • 20
  • 20
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Alumina Thin Film Growth: Experiments and Modeling

Wallin, Erik January 2007 (has links)
<p>The work presented in this thesis deals with experimental and theoretical studies related to the growth of crystalline alumina thin films. Alumina, Al<sub>2</sub>O<sub>3</sub>, is a polymorphic material utilized in a variety of applications, e.g., in the form of thin films. Many of the possibilities of alumina, and the problems associated with thin film synthesis of the material, are due to the existence of a range of different crystalline phases. Controlling the formation of the desired phase and the transformations between the polymorphs is often difficult.</p><p>In the experimental part of this work, it was shown that the thermodynamically stable alpha phase, which normally is synthesized at substrate temperatures of around 1000 °C, can be grown using reactive sputtering at a substrate temperature of 500 °C by controlling the nucleation surface. This was done by predepositing a Cr<sub>2</sub>O<sub>3</sub> nucleation layer. Moreover, it was found that an additional requirement for the formation of the <em>α</em> phase is that the depositions are carried out at low enough total pressure and high enough oxygen partial pressure. Based on these observations, it was concluded that energetic bombardment, plausibly originating from energetic oxygen, is necessary for the formation of <em>α</em> alumina (in addition to the effect of the chromia nucleation layer). Further, the effects of impurities, especially residual water, on the growth of crystalline films were investigated by varying the partial pressure of water in the ultra high vacuum (UHV) chamber. Films deposited onto chromia nucleation layers exhibited a columnar structure and consisted of crystalline <em>α</em>-alumina if deposited under UHV conditions. However, as water to a partial pressure of 1x10<sup>-5</sup> Torr was introduced, the columnar growth was interrupted. Instead, a microstructure consisting of small, equiaxed grains was formed, and the gamma-alumina content was found to increase with increasing film thickness. When gamma-alumina was formed under UHV conditions, no effects of residual water on the phase formation was observed. Moreover, the H content was found to be low (< 1 at. %) in all films. Consequently, this shows that effects of residual gases during sputter deposition of oxides can be considerable, also in cases where the impurity incorporation in the films is found to be low.</p><p>In the modeling part of the thesis, density functional theory based computational studies of adsorption of Al, O, AlO, and O2 on different alpha-alumina (0001) surfaces have been performed. The results give possible reasons for the difficulties in growing the <em>α</em> phase at low temperatures through the identification of several metastable adsorption sites, and also provide insights related to the effects of hydrogen on alumina growth.</p> / Report code: LiU-TEK-LIC-2007:1.
12

Fat contamination of pericardial suction blood in cardiac surgery : clinical and experimental studies in perspectives of transfusion logistics

Appelblad, Micael January 2006 (has links)
Introduction: During cardiac surgery aided by cardiopulmonary bypass (CPB) the autotransfusion of pericardial suction blood (PSB) is regarded mandatory to limit allogeneic blood exposure. PSB is however proposed as a source of lipid microemboli and to contribute to brain damage. This thesis addresses the logistics of allogeneic blood transfusion during coronary artery bypass grafting (CABG), the embolic potential of reinfused PSB, and means to reduce PSB fat contamination, investigated both clinically and experimentally. Methods: Study I) Patients undergoing CABG surgery (n=2469) were included in a database study. The magnitude of surgical bleeding versus blood transfusion was analyzed to extract a subgroup of patients (n=982) in whom transfusions were independent from bleeding. Study II) PSB and venous-blood samples were collected from patients undergoing routine CABG (n=20). The in vitro capillary-flow properties of blood subcomponents and the effects of routine screen filtration were tested. PSB fat contamination was evaluated by imprint microscopy. Study III) Heat extracted liquid human fat or soya oil were mixed with mediastinal drain blood (n=20) and incubated in a temperature controlled column, to evaluate spontaneous density separation of fat. Study IV) The findings from study-III were applied to develop a fat-reducing system (FRS) using two stacked compartments. The FRS was experimentally tested (n=12), with similar methods as in study-III, and clinically evaluated (n=10). A single-chamber blood bag (n=10) served as reference. Results: Study I) A surgical bleeding of less than 400 mL showed no correlation to blood transfusion, although 64 of 982 patients still received allogeneic blood. The strongest predictors for this kind of transfusion were; female gender, weight ≤70 kg, CPB time ≥90 minutes, CPB temperature ≤32 ºC, and advanced age (P&lt;.001 - .038). Study II) The capillary-flow profile of PSB plasma was highly impaired compared to venous plasma (P&lt;.001). Conversely, blood-cell components showed no difference between PSB and venous blood. Routine screen filtration showed no ameliorating effect on capillary-flow resistance. Fat debris was detected on imprints in all PSB samples in contrast to venous plasma (P&lt;.05). Study III) After 10-min of incubation had 77% of added soya oil separated and found contained in the top 20% fraction of blood (P&lt;.001), aimed to be discarded. The density separation of human fat was less efficient compared to soya oil (P=.011). Fat also adsorbed to surface which was more pronounced at low temperature (P&lt;.001). The overall reduction of human fat was 70%. Study IV) PSB contained 1.5 mL fat suspended in 418 mL PSB. Of this fat was 24% surface-bound. Experimental analysis of the proposed FRS revealed an 83% fat-reduction which was clinically confirmed, suggesting 80% reduction (P=.001). The FRS also gave a small but significant erythrocyte-concentrating effect. Conclusions: Transfusion of allogeneic blood during CABG surgery appeared associated with an institutional, individual, and technical bias of an anticipated need and not only used to compensation for surgical bleeding. In part may this reflect a non-compliant CPB methodology and hemodilution. It was confirmed that PSB plasma contained fat, with a suggested embolic potential. Human fat was significantly reduced from mediastinal drain blood by spontaneous density separation and surface adsorption. The prototype FRS used for PSB incubation during CPB allowed an efficient fat reduction.
13

A Study of Heat and Mass Transfer in Porous Sorbent Particles

Krishnamurthy, Nagendra 14 July 2014 (has links)
This dissertation presents a detailed account of the study undertaken on the subject of heat and mass transfer phenomena in porous media. The current work specifically targets the general reaction-diffusion systems arising in separation processes using porous sorbent particles. These particles are comprised of pore channels spanning length scales over almost three orders of magnitude while involving a variety of physical processes such as mass diffusion, heat transfer and surface adsorption-desorption. A novel methodology is proposed in this work that combines models that account for the multi-scale and multi-physics phenomena involved. Pore-resolving DNS calculations using an immersed boundary method (IBM) framework are used to simulate the macro-scale physics while the phenomena at smaller scales are modeled using a sub-pore modeling technique. The IBM scheme developed as part of this work is applicable to complex geometries on curvilinear grids, while also being very efficient, consuming less than 1% of the total simulation time per time-step. A new method of implementing the conjugate heat transfer (CHT) boundary condition is proposed which is a direct extension of the method used for other boundary conditions and does not involve any complex interpolations like previous CHT implementations using IBM. Detailed code verification and validation studies are carried out to demonstrate the accuracy of the developed method. The developed IBM scheme is used in conjunction with a stochastic reconstruction procedure based on simulated annealing. The developed framework is tested in a two-dimensional channel with two types of porous sections - one created using a random assembly of square blocks and another using the stochastic reconstruction procedure. Numerous simulations are performed to demonstrate the capability of the developed framework. The computed pressure drops across the porous section are compared with predictions from the Darcy-Forchheimer equation for media composed of different structure sizes. The developed methodology is also applied to CO2 diffusion studies in porous spherical particles of varying porosities. For the pore channels that are unresolved by the IBM framework, a sub-pore modeling methodology developed as part of this work which solves a one-dimensional unsteady diffusion equation in a hierarchy of scales represented by a fractal-type geometry. The model includes surface adsorption-desorption, and heat generation and absorption. It is established that the current framework is useful and necessary for reaction-diffusion problems in which the adsorption time scales are very small (diffusion-limited) or comparable to the diffusion time scales. Lastly, parametric studies are conducted for a set of diffusion-limited problems to showcase the powerful capability of the developed methodology. / Ph. D.
14

Adsorption of surface active elements on the iron (100) surface : A study based on ab initio calculations

Cao, Weimin January 2009 (has links)
<p>In the present work, the structural, electronic properties, thermodynamic stability and adatom surface movements of oxygen and sulfur adsorption on the Fe surface were studied based on the ab initio method.</p><p>Firstly, the oxygen adsorbed on the iron (100) surface is investigated at the three adsorption sites top, bridge and hollow sites, respectively. Adsorption energy, work function and surface geometries were calculated, the hollow site was found to be the most stable adsorption site, Which is in agreement with the experiments. In addition, the difference charge density of the different adsorption systems was calculated to analyze the interaction and bonding properties between Fe and O. It can be found out that the charge redistribution was related to the geometry relaxation.</p><p>Secondly, the sulfur coverage is considered from a quarter of one monolayer (1ML) to a full monolayer. Our calculated results indicate that the most likely site for S adsorption is the hollow site on Fe (100). We find that the work function and its change Df increased with S coverage, in very good agreement with experiments. Due to a recent discussion regarding the influence of charge transfer on Df, we show that the increase in Df can be explained by the increasing surface dipole moment as a function of S coverage. In addition, the Fe-S bonding was analyzed. Finally, the thermodynamic stabilities of the different structures were evaluated as a function the sulfur chemical potential.</p><p>Finally, a two dimensional (2D) gas model was proposed to simulate the surface active elements, oxygen and sulfur atoms, movement on the Fe (100) surface. The average velocity of oxygen and sulfur atoms was found out to be related to the vibration frequencies and energy barrier in the final expression developed. The calculated results were based on the density function and thermodynamics & statistical physics theories. In addition, this 2D gas model can be used to simulate and give an atomic view of the complex interfacial phenomena in the steelmaking refining process.</p>
15

Separation of Proteins with Capillary Electrophoresis in Coated Capillaries with and without Electroosmosis : Studies on Zone Broadening and Analytical Performances

Mohabbati, Sheila January 2006 (has links)
<p>Proteins have such structural features that they may interact with different types of surfaces by all possible forces, i.e., electrostatic, hydrogen bonding, hydrophobic. In this thesis two different types of coatings for fused silica capillaries aimed to eliminate such interactions have been studied. The first is a covalent, electroosmosis-free coating with polyacrylamide (PAA) and the second involves a non-covalent coating with the quaternary ammonium compound N, N-didodecyl –N, N- dimethylammonium bromide (DDAB) with a strong anodic electroosmosis. Optimal conditions regarding efficiency and resolution were established by variations of the composition and ionic strengths of buffers at pH below the isoelectric point of the proteins. To achieve high efficiency and resolution the choice of buffer constituents was extremely important. </p><p>The PAA coating was very stable at neutral and acidic conditions. Ammonium acetate (0.12 M) and ammonium hydroxyacetate (0.15 M) both at pH 4 provided the best separations with plate numbers up to 1 700 000 plate/m that is among the highest reported in the literature. Capillaries coated with DDAB were stable enough to, without recoating, permit consecutive separations of the proteins up to 9 hours (90 injections). High apparent efficiencies (over 1 million plates/m) were achieved with ammonium acetate (0.07 M), ammonium hydroxyacetate (0.08 M) and sodium phosphate (0.1 M) at pH 4. </p><p>Zone broadening was studied by determination of the variance contributions from all main parameters. Significant variances were contributions from longitudinal diffusion, capillary curvature, injection plug, detector time response and detector slit width while other variances, e.g., variances for Joule heat and vertical sedimentation were negligible. The remaining undetermined variance may have its origin in all types of relatively slow interactions including adsorption onto the capillary surfaces and protein-buffer component interactions. The results indicate that the latter is the main cause to zone broadening in protein separations.</p>
16

Separation of Proteins with Capillary Electrophoresis in Coated Capillaries with and without Electroosmosis : Studies on Zone Broadening and Analytical Performances

Mohabbati, Sheila January 2006 (has links)
Proteins have such structural features that they may interact with different types of surfaces by all possible forces, i.e., electrostatic, hydrogen bonding, hydrophobic. In this thesis two different types of coatings for fused silica capillaries aimed to eliminate such interactions have been studied. The first is a covalent, electroosmosis-free coating with polyacrylamide (PAA) and the second involves a non-covalent coating with the quaternary ammonium compound N, N-didodecyl –N, N- dimethylammonium bromide (DDAB) with a strong anodic electroosmosis. Optimal conditions regarding efficiency and resolution were established by variations of the composition and ionic strengths of buffers at pH below the isoelectric point of the proteins. To achieve high efficiency and resolution the choice of buffer constituents was extremely important. The PAA coating was very stable at neutral and acidic conditions. Ammonium acetate (0.12 M) and ammonium hydroxyacetate (0.15 M) both at pH 4 provided the best separations with plate numbers up to 1 700 000 plate/m that is among the highest reported in the literature. Capillaries coated with DDAB were stable enough to, without recoating, permit consecutive separations of the proteins up to 9 hours (90 injections). High apparent efficiencies (over 1 million plates/m) were achieved with ammonium acetate (0.07 M), ammonium hydroxyacetate (0.08 M) and sodium phosphate (0.1 M) at pH 4. Zone broadening was studied by determination of the variance contributions from all main parameters. Significant variances were contributions from longitudinal diffusion, capillary curvature, injection plug, detector time response and detector slit width while other variances, e.g., variances for Joule heat and vertical sedimentation were negligible. The remaining undetermined variance may have its origin in all types of relatively slow interactions including adsorption onto the capillary surfaces and protein-buffer component interactions. The results indicate that the latter is the main cause to zone broadening in protein separations.
17

Nanoporous Carbons: Porous Characterization and Electrical Performance in Electrochemical Double Layer Capacitors

Caguiat, Johnathon 21 November 2013 (has links)
Nanoporous carbons have become a material of interest in many applications such as electrochemical double layer capacitors (supercapacitors). Supercapacitors are being studied for their potential in storing electrical energy storage from intermittent sources and in use as power sources that can be charged rapidly. However, a lack of understanding of the charge storage mechanism within a supercapacitor makes it difficult to optimize them. Two components of this challenge are the difficulties in experimentally characterizing the sub-nanoporous structure of carbon electrode materials and the electrical performance of the supercapacitors. This work provides a means to accurately characterize the porous structure of sub-nanoporus carbon materials and identifies the current limitations in characterizing the electrical performance of a supercapacitor cell. Future work may focus on the relationship between the sub-nano porous structure of the carbon electrode and the capacitance of supercapacitors, and on the elucidation of charge storage mechanisms.
18

Nanoporous Carbons: Porous Characterization and Electrical Performance in Electrochemical Double Layer Capacitors

Caguiat, Johnathon 21 November 2013 (has links)
Nanoporous carbons have become a material of interest in many applications such as electrochemical double layer capacitors (supercapacitors). Supercapacitors are being studied for their potential in storing electrical energy storage from intermittent sources and in use as power sources that can be charged rapidly. However, a lack of understanding of the charge storage mechanism within a supercapacitor makes it difficult to optimize them. Two components of this challenge are the difficulties in experimentally characterizing the sub-nanoporous structure of carbon electrode materials and the electrical performance of the supercapacitors. This work provides a means to accurately characterize the porous structure of sub-nanoporus carbon materials and identifies the current limitations in characterizing the electrical performance of a supercapacitor cell. Future work may focus on the relationship between the sub-nano porous structure of the carbon electrode and the capacitance of supercapacitors, and on the elucidation of charge storage mechanisms.
19

Adsorption of surface active elements on the iron (100) surface : A study based on ab initio calculations

Cao, Weimin January 2009 (has links)
In the present work, the structural, electronic properties, thermodynamic stability and adatom surface movements of oxygen and sulfur adsorption on the Fe surface were studied based on the ab initio method. Firstly, the oxygen adsorbed on the iron (100) surface is investigated at the three adsorption sites top, bridge and hollow sites, respectively. Adsorption energy, work function and surface geometries were calculated, the hollow site was found to be the most stable adsorption site, Which is in agreement with the experiments. In addition, the difference charge density of the different adsorption systems was calculated to analyze the interaction and bonding properties between Fe and O. It can be found out that the charge redistribution was related to the geometry relaxation. Secondly, the sulfur coverage is considered from a quarter of one monolayer (1ML) to a full monolayer. Our calculated results indicate that the most likely site for S adsorption is the hollow site on Fe (100). We find that the work function and its change Df increased with S coverage, in very good agreement with experiments. Due to a recent discussion regarding the influence of charge transfer on Df, we show that the increase in Df can be explained by the increasing surface dipole moment as a function of S coverage. In addition, the Fe-S bonding was analyzed. Finally, the thermodynamic stabilities of the different structures were evaluated as a function the sulfur chemical potential. Finally, a two dimensional (2D) gas model was proposed to simulate the surface active elements, oxygen and sulfur atoms, movement on the Fe (100) surface. The average velocity of oxygen and sulfur atoms was found out to be related to the vibration frequencies and energy barrier in the final expression developed. The calculated results were based on the density function and thermodynamics &amp; statistical physics theories. In addition, this 2D gas model can be used to simulate and give an atomic view of the complex interfacial phenomena in the steelmaking refining process.
20

Phase Transitions, Magnetism and Surface Adsorptions Assessed by Meta-GGA Functionals and Random Phase Approximation

Xiao, Bing January 2014 (has links)
The meta-GGA functionals and random phase approximation are tested for phase transitions and a strongly correlated transition metal oxide in this dissertation. One of the latest meta-GGA functionals is also employed to study the van der Waals bound system in surface science. Our main purpose is to reveal the performance of new exchange-correlation functionals on various properties and systems. We are also interested in seeking the possible relationship between the performance of a semilocal functional and its exchange enhancement factor. We have studied the structural phase transitions in crystalline Si (insulator to metal), SiO2 (insulator to insulator) and Zr (metal to metal) systems, as a test of exchange energy semilocal functionals on Jacob's ladder. Our results confirm the energy-geometry dilemma of GGAs in three systems. The most sophisticated non-empirical meta-generalized gradient approximations (meta-GGAs) such as TPSS (Tao-Perdew-Staroveov-Scuseria) and revTPSS (revised TPSS) give better lattice constants than PBE, but the phase transition parameters (energy difference and transition pressure) are smaller and less realistic than those from the latter GGA. However, the recent functionals of meta-GGA made simple family (MGGA_MS) behave differently to those previous meta-GGAs, predicting larger and more realistic phase transition parameters. Meanwhile, MGGA_MS also delivers the equilibrium geometry of crystalline materials similar to previous non-empirical meta-GGAs. In contrast to semilocal functionals, the nonlocal functionals such as the range-separated hybrid functional HSE06 (Heyd-Scuseria-Ernzerhof) and non-self consistent random phase approximation (RPA) are not only able to give the accurate equilibrium geometry , but also predict the realistic phase transition parameters for Si and SiO2 systems. The ground state of rutile-type vanadium dioxide (R-VO2) represents a great challenge to the current density functional theory. In this dissertation, we investigated the electronic structures and magnetism of R-VO2 using exchange-correlation functionals of all five rungs on Jacob's ladder. Our calculations show that all semilocal functionals (LSDA, GGAs and meta-GGAs) and hybrid functionals (HSE06) stabilize the spin-polarized states (ferromagnetic and anti-ferromagnetic states) over non-magnetic state, which are completely opposite to experimental observation. Surprisingly, LSDA gives the best energetic descriptions for magnetic and non-magnetic phases of R-VO2 among semilocal functionals and HSE06. Otherwise, RPA calculations are highly dependent on the inputs in the spin polarized case. With PBE inputs, RPA also fails, giving lower energies for spin-polarized states than for the non-magnetic phase. Meanwhile, the results are reversed using LSDA inputs. From the computed equilibrium cell volume, we observe the error cancellation in the exchange-correlation hole of most semilocal functionals in the spin-polarized calculations. LSDA and RPA do not fit to this picture. By analyzing the local magnetic moments of vanadium atoms, it is found that the magnetic property predicted from meta-GGA can be related to its exchange enhancement factor. The physisorption of a molecule on a transition metal surface is also another difficult problem in DFT because of the long-range van der Waals interactions. The recently developed MGGA_MS family of density functionals is able to capture a portion of intermediate range dispersion interactions. Therefore, we employed MGGA_MS2 to study the physisorption of CO2 on Pt (111) surface, and the results are compared to those of PBE, PBE+D2 and optB88-vdW methods. The computed binding curves confirm that that MGGA_MS2 indeed captures the van der Waals interactions near the equilibrium binding distance, and the obtained binding distance is also in good agreement with PBE+D2 and optB88-vdW calculations. By computing the electron density difference map (EDDM), we find that the electron densities of CO2 and Pt (111) surface are strongly polarized in optB88-vdW, creating the dipole moments in two subsystems. Such effect is reduced in MGGA_MS2. For PBE, the polarization of electron density is very weak, but not negligible. The α dependence in the exchange enhancement factor of a meta-GGA is the key to capture the intermediate range van der Waals interactions. In summary, a meta-GGA functional can step out of the famous "energy-geometry dilemma" , predicting good lattice constants and phase transition parameters at the same time. With the proper construction, a meta-GGA can even capture a portion of van der Waals interactions. The RPA is usually more accurate than semilocal functionals for many ground state properties. The strongly correlated systems like R-VO2 are still a big challenge to present-day density functional theory. We will continue to seek more accurate exchange-correlation functionals. / Physics

Page generated in 0.373 seconds