• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 314
  • 84
  • 30
  • 19
  • 14
  • 10
  • 6
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 570
  • 570
  • 388
  • 87
  • 81
  • 76
  • 75
  • 75
  • 69
  • 64
  • 62
  • 56
  • 50
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni

Wei, Dong, January 2006 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2006. / Abstract. Vita. Includes bibliographical references.
92

Electromagnetic modeling and experimental evaluation of plasmon-based molecular sensors

Chien, Wei-Yin, January 1900 (has links)
Thesis (M.Eng.). / Written for the Dept. of Electrical and Computer Engineering. Title from title page of PDF (viewed 2008/04/12). Includes bibliographical references.
93

Plasmons in assembled metal nanostructures

Jain, Prashant K. January 2008 (has links)
Thesis (M. S.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2008. / Committee Chair: El-Sayed, Mostafa A.; Committee Member: Lyon, L. Andrew; Committee Member: Sherrill, C. David; Committee Member: Wang, Zhong Lin; Committee Member: Whetten, Robert L.
94

Surface plasmon resonance sensor based on the tilted fiber bragg grating /

Shevchenko, Yanina. January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2007. / Includes bibliographical references (p. 80-92). Also available in electronic format on the Internet.
95

Ultrafast dynamics and nonlinear behavior of surface-plasmon polaritons in optical microcavities /

Engenhardt, Klaus Manfred, January 2005 (has links)
Thesis (Ph. D.)--University of Oregon, 2005. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 166-173). Also available for download via the World Wide Web; free to University of Oregon users.
96

Infrared surface plasmons in double stacked nickel microarrays lipid bilayer systems /

Teeters-Kennedy, Shannon Marie, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 278-288).
97

Design, Modeling And Simulation Of Nanoscale Optoelectronic Devices: Semiconductor Nano-Lasers And Plasmonic Waveguides

January 2012 (has links)
abstract: This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection in the longitudinal p-i-n and coaxial p-n core-shell NWs was performed. It is found that high density carriers can be efficiently injected into and confined in the core-shell structure. The required bias voltage and doping concentrations in the core-shell structure are smaller than those in the longitudinal p-i-n structure. A new device structure with core-shell configuration at the p and n contact regions for electrically driven single NW laser was proposed. Through a comprehensive design trade-off between threshold gain and threshold voltage, room temperature lasing has been proved in the laser with low threshold current and large output efficiency. For the plasmonic part, the propagation of surface plasmon polariton (SPP) in a metal-semiconductor-metal structure where semiconductor is highly excited to have an optical gain was investigated. It is shown that near the resonance the SPP mode experiences an unexpected giant modal gain that is 1000 times of the material gain in the semiconductor and the corresponding confinement factor is as high as 105. The physical origin of the giant modal gain is the slowing down of the average energy propagation in the structure. Secondly, SPP modes lasing in a metal-insulator-semiconductor multi-layer structure was investigated. It is shown that the lasing threshold can be reduced by structural optimization. A specific design example was optimized using AlGaAs/GaAs/AlGaAs single quantum well sandwiched between silver layers. This cavity has a physical volume of 1.5×10-4 λ03 which is the smallest nanolaser reported so far. Finally, the all-semiconductor based plasmonics was studied. It is found that InAs is superior to other common semiconductors for plasmonic application in mid-infrared range. A plasmonic system made of InAs, GaSb and AlSb layers, consisting of a plasmonic source, waveguide and detector was proposed. This on-chip integrated system is realizable in a single epitaxial growth process. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
98

The effect of geometry and surface morphology on the optical properties of metal-dielectric systems

Hasegawa, Keisuke, 1977- 09 1900 (has links)
xiii, 133 p. ; ill. (some col.) A print copy of this title is available through the UO Libraries. Search the library catalog for the location and call number. / We analyze the effect of geometry and surface morphology on the optical properties of metal-dielectric systems. Using both analytical and numerical modeling, we study how surface curvature affects the propagation of surface plasmon polaritons (SPPs) along a metal-dielectric interface. We provide an intuitive explanation for how the curvature causes the phase front to distort, causing the SPPs to radiate their energy away from the metal-dielectric interface. We quantify the propagation efficiency as functions of the radius of curvature, and show that it depends nonmonotonically on the bend radius. We also show how the surface morphology influences the transmittance and the reflectance of light from disordered metal-dielectric nanocomposite films. The films consist of semicontinuous silver films of various surface coverage that are chemically deposited onto glass substrates. They exhibit a large and broadband reflection asymmetry in the visible spectral range. In order to investigate how the surface morphology affects the asymmetry, we anneal the samples at various temperatures to induce changes in the morphology, and observe changes in the reflection spectra. Our study indicates that the surface roughness and the metal surface coverage are the key geometric parameters affecting the reflection spectra, and reveals that the large asymmetry is due to the different surface roughness light encounters when incident from different side of the film. Additionally, we analyze how thin metal and dielectric layers affect the optical properties of metal-dielectric systems. Using the concept of dispersion engineering, we show that a metal-dielectric-metal microsphere--a metal sphere coated with a thin dielectric shell, followed by a metal shell--support a band of surface plasmon resonances (SPRs) with nearly identical frequencies. A large number of modes belonging to this band can be excited simultaneously by a plane wave, and hence enhancing the absorption cross-section. We also find that the enhanced absorption is accompanied by a plasmon assisted transparency due to an avoided crossing of dominant SPR bands. We demonstrate numerically that both the enhanced absorption and the plasmon assisted transparency are tunable over the entire visible range. We also present an experimental study of light scattering from silica spheres coated with thin semicontinuous silver shells, and attempt to describe their optical response using a modified scaling theory. This dissertation includes previously published co-authored materials. / Adviser: Miriam Deutsch
99

Surface plasmon random scattering and related phenomena

Schumann, Robert Paul 06 1900 (has links)
xiii, 129 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Surface plasmon polaritons (SPPs) are collective electron excitations with attendant electromagnetic fields which propagate on a metal-dielectric interface. They behave, in many ways, as model two-dimensional electromagnetic waves. However, because the evanescent field of the SPPs extends a short distance outside the interface, a near-field probe can modify the wave propagation. We use this behavior to study both SPP scattering within the plane of the interface and also the transition to free-space propagation out of the plane. We have, in particular, studied the multiple scattering of SPPs excited on rough silver films. Our laboratory possesses apertureless near-field scanning optical microscopes (A-NSOMs), the probes of which can act as an in-plane scatterer of SPPs. Subsequent momentum-conserving decays of the SPPs generate an expanding hollow cone of light to which information about the direction and phase of the SPPs on the surface is transferred. A focus of our studies has been SPP multiple scattering when one of the scatterers (the tip) can move. This problem is very closely related to a similar problem in mesoscopic electronic transport, involving "universal conductance fluctuations". It is also related to various radar-detection, microwave communications and medical imaging problems. In parallel with actual experimental measurements, we have also conducted extensive Monte Carlo simulations of the scattering. Multiple scattering leads to the appearance and detection of "speckle" in the far field. A speckle field, however, is more properly considered in terms of its embedded optical vortices and so we have used holographic techniques to study these. We have demonstrated that vortices can be manipulated, created and destroyed by movement of the STM probe tip. Optical vortices are an example of the effect of "geometric" or "topological" phase in physics and as such link the trajectory of a parameter in one space to the phase observed in another. In our case, the trajectory of the A-NSOM tip parallel to the sample surface plane generates topological phase in the far field, manifestations of which are vortices. / Committee in charge: Stephen Kevan, Chairperson, Physics; Stephen Gregory, Advisor, Physics; Michael Raymer, Member, Physics; David Strom, Member, Physics; Mark Lonergan, Outside Member, Chemistry
100

Plasmonic-based Imaging Detection of Chemical Reactions

January 2013 (has links)
abstract: An imaging measurement technique is developed using surface plasmon resonance. Plasmonic-based electrochemical current imaging (P-ECi) method has been developed to image the local electrochemical current optically, it allows us to measure the current density quickly and non-invasively [1, 2]. In this thesis, we solve the problems when we extand the P-ECi technique to the field of thin film system. The P-ECi signal in thin film structure was found to be directly proportional to the electrochemical current. The upper-limit of thin film thickness to use the proportional relationship between P-ECi signal and EC current was discussed by experiment and simulation. Furthermore, a new algorithm which can calculate the current density from P-ECi signal without any thickness limitation is developed and tested. Besides, surface plasmon resonance is useful phenomenon which can be used to detect the changes in the refractive index near the gold sensing surface. With the assistance of pH indicator, by applied EC potential on the gold film as the working electrode, the detection of H2 evolution reaction can be enhanced. This measurement technique is useful in analyzing local EC information and H2 evolution. References [1] S. Wang, et al., "Electrochemical Surface Plasmon Resonance: Basic Formalism and Experimental Validation," Analytical Chemistry, vol. 82, pp. 935-941, 2010/02/01 2010. [2] X. Shan, et al., "Imaging Local Electrochemical Current via Surface Plasmon Resonance," Science, vol. 327, pp. 1363-1366, March 12, 2010 2010. / Dissertation/Thesis / M.S. Electrical Engineering 2013

Page generated in 0.0406 seconds