• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 313
  • 84
  • 30
  • 19
  • 14
  • 10
  • 6
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 569
  • 569
  • 387
  • 87
  • 81
  • 76
  • 75
  • 75
  • 69
  • 63
  • 62
  • 56
  • 50
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Novel Devices for Terahertz Wave Imaging, Wave-guiding and Sensing

Liu, Jingbo 16 September 2013 (has links)
Several novel optical devices, which were designed to manipulate terahertz waves for broadband near-field imaging, wave-guiding (invisible space), and sensing (resonator), are presented in this thesis. We developed the original working concepts of each device, and demonstrated the prototype experimentally in our lab. The working concepts of physics were investigated in experiment, in simulation and in theoretical analysis. We exploited a tapered parallel-plate waveguide (PPWG) as a novel probe for broadband near-field imaging. This imaging probe consists of two metal plates with the plate spacing gradually tapered from one end to the other. We proved that the space tapering enables this probe to propagate the broadband THz waves efficiently (with low-loss, no cut-off and nearly no dispersion) from the input end of large spacing into the narrow end of sub-wavelength spacing. Working in a reflection mode, this imaging probe is proved to be able to differentiate the dielectric features as well as topographic information on the sample. Combined with the methodology of filtered back projection, we reconstructed a two-dimensional image of a gold pattern on a GaAs chip by using this tapered PPWG probe. The smallest feature of ~100 µm is resolved by using the waves with average wavelength of 1.5 mm. We studied the phenomenon of surface plasmon-polariton in THz range on the platform of a parallel-plate waveguide (PPWG). In this thesis, we show the characterization of the waveguide mode of a finite-width parallel plate waveguide by using an improved scattering-probe technique. An abrupt waveguide mode transition was observed at a very narrow frequency range. We demonstrated that this transition frequency is determined by the material properties of the waveguide, the frequencies of the electromagnetic waves as well as the geometry of the waveguide. This result provides a good guidance for the waveguide design for THz transmission. We also exploited the capability of using the spoof surface plasmon to enhance the reflectivity of an interface between free space and a PPWG. We demonstrated that the reflection coefficient of this interface can be enhanced up to ~100 % at a designed frequency, by cutting a designed pattern of periodic rectangular groove on the output facet of the PPWG. A lateral shift and a phase shift of the reflected beam is observed in the experiment, which is a strong reminiscent of Goos-Hanchen shift. We carried out the experimental, simulation and theoretical characterizations of the lateral and phase shift. As an application, we designed and demonstrated a prototype of a band-pass THz resonator. We introduced the concept of a waveguide-based two-dimensional inhomogeneous artificial dielectric into THz range. This artificial dielectric is the space between the two metal plates of a PPWG working in TE1 mode. We designed a THz mirage device (or an invisible space device) by using ray-tracing and full-wave simulations, which contributed to the first experimental demonstration of such a device. A metal coin of size several times larger than the working wavelength can be hidden in the device without casting any shadow. This work is in collaboration with Dr. Rajind Mendis and the author of this thesis contributed to the design and characterization of the device in simulations.
72

SPR-based method for concentration determination of proteins in a complex environment

Ekström, Emma January 2012 (has links)
In this project a method based on surface plasmon resonance has been developed for determining the concentration of several His-tagged proteins in complex solutions. It showed large dynamic range, no measureable non-specific binding and high sensitivity (with linear range around 0.1–10 μg/ml depending on the proteins). The method showed a low variation when checked on MBP-His during an extended time period. The concentrations of the His-tagged protein in the lysate has also been determined and compared with other alternative methods. This method will later be used to analyse protein concentrations during development and optimization of chromatographic purification process.
73

Terahertz Surface Plasmon Polariton-like Surface Waves for Sensing Applications

Arbabi, Amir January 2009 (has links)
Surface plasmon polaritons are electromagnetic surface waves coupled to electron plasma oscillation of metals at a metal-dielectric interface. At optical frequencies, these modes are of great interest because of their high confinement to a metal-dielectric interface. Due to the field enhancement at the interface, they have been used in different applications such as sensors, second harmonic generation and enhanced Raman scattering. Surface plasmon resonance based sensors are being used for detection of molecular adsorption such as DNA and proteins. These sensors are known to be highly sensitive and have successfully become commercialized. Terahertz (THz) frequency band of electromagnetic spectrum has attracted researchers in the last few years mostly because of sensing and imaging applications. Many important chemical and biological molecules have their vibrational and rotational resonance frequencies in the THz range that makes the THz sensing one of the most important applications of THz technology. Considering above mentioned facts, extending the concept of surface plasmon sensors to THz frequencies can result in sensitive sensors. In this work the possibility of this extension has been investigated. After reviewing optical surface plasmon polariton waves and a basic sensor configuration, surface plasmon polariton waves propagating on at metallic and doped semiconductor surfaces have been examined for this purpose. It has been shown that these waves on metallic surfaces are loosely confined to the metal-dielectric interface and doped semiconductors are also too lossy and cannot meet the requirements for sensing applications. Afterwards, it is shown that periodically patterned metallic surfaces can guide surface waves that resemble surface plasmon polariton waves. A periodically patterned metallic surface is used to guide THz surface plasmon polariton-like surface waves and a highly sensitive sensor is proposed based on that. The quasi-optical continuous wave (CW) THz radiation is coupled to this structure using the Otto's attenuated total reflection (ATR) configuration and the sensitivity of the device is discussed. A general scattering parameter based model for prism coupling has been proposed and verified. It is shown that a critical coupling condition can happen by changing the gap size between the prim and periodic surface. Details of fabrication of the periodic structure and experimental setup have also been presented.
74

An Exploration of Electron-Excited Surface Plasmon Resonance for Use In Biosensor Applications

Wathen, Adam D 12 April 2004 (has links)
Electron-excited surface plasmon resonance (eSPR) is investigated for potential use in biosensors. Optical SPR sensors are commercially available at present and these sensors are extremely sensitive, but have the tendency to be relatively large, expensive, and ignore the potentials of microelectronic technology. By employing the use of various microelectronic and nanotechnology principles, the goal is to eventually design a device that exploits the eSPR phenomenon in order to make a sensor which is siginificantly smaller in size, more robust, and cheaper in cost.
75

The characteristic of ZnO thin film heterjunction deposited by RF sputtering

Liu, Cheng-Yu 14 July 2011 (has links)
The electro-optical properties of the ZnO thin film are affected by the deposition parameters. In this study, we find the optimum growth parameters to grow high quality ZnO film. We change the RF power to adjust the surface roughness. The higher RF power will result in a higher deposition rate and rough surface roughness. We obtained an optimum surface roughness of 1.811nm at 50W RF power. The ZnO films have more than 80% transmittance in visible range, and obvious absorption in UV range. A significant peak in the wavelength of 385nm is observed in PL measurement. For the electric characteristics, the resistivity of as-grown ZnO films is high and decreases with post annealing treatment. We have obtained a minimum resistivity of 2.764¡Ñ10-2(£[-cm) at 700oC annealing treatment. Under the fixed 50RF power and 5sccm Ar flux, the optical characteristics and the crystal qualities are worse in the lower pressure (below 5mTorr). The ZnO films have lowest resistivity of 1.826¡Ñ10-2(£[-cm) in the 15mTorr and, strongest PL intensities in 25mTorr after 700oC annealing treatment. After the optimum growth condition, we enhance the optical characteristics through the surface Plasmon effect of the metal nanoparticles. The nano gold particles in the diameter of 50nm and 200-250nm can be obtained under the 5nm and 10nm Au film deposition and annealing at 700oC, respectively. For the optical characteristics, the PL intensity and optical transmittance are enhanced dependent on the size and position of the gold nanoparticles. For the electric characteristics, the n-ZnO/p-Si shows a good rectification effect. The mechanisms of current conduction are space charge current limit, and tunnel current. Sample with 50nm diameter has a significant space charge current limit mechanism. In the C-V measurement, we observed the hysteresis curve in the sample with gold nanoparticles. The sample with larger gold particles have larger memory window of ¡µVFB=0.23.
76

Study of Surface-Enhanced Raman Spectrum (SERS) on Silver Island Film

Lu, Yu-Chun 22 August 2012 (has links)
Surface-enhanced Raman scattering (SERS) effect on Ag films with different morphology is studied. We varied the deposition rates and also proposed a new method to control the nano-gaps on the silver island film. By bending the glass substrates during film deposition, we can control the gap width on the fractal Ag film. The measured SERS intensity is related to the metal film morphology and we found that the gap width is the dominant factor to analyze the SERS signal. The 3-layer metal-insulator-metal structure is simulated and the E-field intensity with different gaps fits to our measurement results.
77

Method development for studying the interactions between antithrombin and heparin

Elnerud, Maja January 2008 (has links)
<p>Antithrombin (AT) is one of the most important anticoagulant factors in the blood, and its effects are increased by the interaction with glycosaminoglycans, especially heparin. AT appears in two additional variants, other than the native form, and those variants have antiangiogenic properties and also bind to heparin. AT is found in two distinct isoforms (alfa, beta) where the difference lie in the degree of glycosylation. This project has shown interesting results regarding the dependence of calcium ions on the binding between heparin and antithrombin. The results show that the beta-isoform increases its affinity for heparin in the presence of calcium in contrast to the alfa-isoform, which shows a decrease in the heparin affinity under the same conditions. This project has also given results that after further investigation and development could be used for an improved set-up of the immobilisation of AT variants in a surface plasmon resonance system. The results show that immobilisation of a protein in the reference channel gives a better shielding effect between the negatively charged heparin molecules and the negatively charged dextran matrix. Furthermore a more significant difference was seen between the two heparin moieties used during binding affinity studies, especially for native AT.</p>
78

Characterization and analysis of osteopontin-immobilized poly(2-hydroxyethyl methacrylate) /

Martin, Stephanie M., January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 198-210).
79

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) characterization of conformation and orientation of adsorbed protein films /

Xia, Nan. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 164-178).
80

Quantitative aspects of SPR spectroscopy and SPR microscopy, applications in protein binding to immobilized vesicles and dsDNA arrays /

Shumaker-Parry, Jennifer Sue. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 243-262).

Page generated in 0.0569 seconds