• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5862
  • 1830
  • 1661
  • 672
  • 549
  • 176
  • 175
  • 137
  • 127
  • 101
  • 91
  • 51
  • 51
  • 51
  • 51
  • Tagged with
  • 13963
  • 1649
  • 1403
  • 973
  • 864
  • 779
  • 779
  • 749
  • 725
  • 689
  • 661
  • 628
  • 623
  • 564
  • 539
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
681

Evaluation of Frictional Characteristics of Precision Machined Surfaces

Kalil, Richard Charles, Jr. 07 June 2004 (has links)
Precision surface finishes are used in a wide variety of applications. From bearing races and rolling elements to parallel slide ways, the frictional characteristics of these surfaces are critical to the performance of the products. Experimental trial and error has shown that certain surfaces outperform others in certain applications, but the specific surface characteristics that make this true have yet to be fully understood. The research goal was to develop an apparatus that can test the coefficient of rolling/sliding friction of different precision machined surfaces and to combine this data with topographic analysis of the surfaces to correlate specific 3-D parameters with the frictional performance of a surface. The sample treatments consisted of four different surface textures (hard-turned, ground, honed and isotropic finish) and four different relative surface speeds. By monitoring the torque in the sample-mounting shaft under lubricated conditions the coefficient of rolling/sliding friction of each surface was found. Utilizing white light interferometry measurement of the surfaces, a highly detailed map of each surface was obtained. Using different characteristic values of each machined surface (RMS roughness, asperity density, lay direction, etc.), the frictional behavior of the surfaces were compared to the surface characteristics yielding insight into the relationship between surface finish and friction in rolling/sliding contact. Friction coefficient was found to correlate most strongly with RMS roughness (Sq) and density of surface summits (Sds). These parameters govern mechanical interference of asperities and surface adhesion respectively. These findings suggest that friction coefficients of surfaces could be optimized through manipulation of three-dimensional surface parameters.
682

The wettability of cellulose film as affected by vapor-phase adsorption of amphipathic molecules

Ferris, James L. (James Leonard) 01 January 1974 (has links)
No description available.
683

A study of dynamic wettability on a hydrophobic surface

McIntyre, David E. 01 January 1969 (has links)
No description available.
684

Spectroscopic characterization of monometallic and bimetallic model catalysts

Luo, Kai 02 June 2009 (has links)
Monometallic and bimetallic model catalysts on either refractory metal singlecrystals as planar surfaces or oxide supports as nano-size clusters have been systematically studied using X-ray photoemission spectroscopy (XPS), low energy ion scattering spectroscopy (LEIS), low energy electron diffraction (LEED), infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD) under ultra-high vacuum (UHV) conditions. Of particular interest in this investigation is the characterization of the surface composition, morphology, and electronic/geometric structure of the following catalysts: Au/TiOx, Au-Pd/Mo(110), Au- Pd/SiO2, Cu-Pd/Mo(110), and Sn/Pd(100). Structure-reactivity correlations during surface-alloy formation and adsorption-desorption processes were explained in terms of ensemble and ligand effects. Prospects of translating the accumulated atomic-level information into more efficient 'real world' catalysts were discussed.
685

On the Kodaira Dimension of the Moduli Space of K3 Surfaces II

KONDO, SHIGEYUKI 04 1900 (has links)
No description available.
686

The Effects of the Surface Structures of CuSO4/Al2O3 catalysts on the Direct Coupling of Methane Reactions

Chang, Han-Ching 14 July 2000 (has links)
none
687

Full Wave Simulation of the Package of SAW Filter

Lin, Shin-Hung 07 July 2003 (has links)
Among communication filters, SAW Filters have been largely used in RF and IF filters of mobile phone because of their small size, high reliability, and the capability to be mass produced. But with increasing of working frequency and miniaturization of SAW package, SAW filters are more sensitive to interference introduced by the package and SAW Pattern. Discrepancy in performance between design and measurement can be large if the packaging effects are not considered. In this thesis, we use the full wave analysis approach that combining full wave simulator HFSS (High Frequency Structure Simulator) with circuit software to simulate the package effects and the electromagnetic effects of SAW pattern. Our approach has been applied to several cases and measurements are also carried out to verify our results. Good agreements are obtained. We also use this method to discuss the electromagnetic effects inside package, such as the change of the bond wire length. With an accurate prediction, we can save factory design time and production cost.
688

none

CHOU, HENG-CHUNG 16 July 2003 (has links)
This research is based on ¡§GTAW¡¨ mode, toweld the premixedferrite, molybdenum, and carbon powders on SC45 carbon steel substrate. Learning from the previous experiments, a wear test under a high temperature of 450¢J, was employed to get the Ring-disk coefficients of sliding friction about 0.3, the depletion amounts to 0.67 mg Nm per million, that exhibited a better hardness and anti-wear property than the substrate. The welding layer¡¦s solidification structure was examined by XRD,SEM, EPMA and TEM. The experimental results revealed that in the layer welded with GTAW, primary dendritic arms are of eutectic solidification structures. In X sample, £]-Mo2C is located in the dendrite closed to the un-melted zone. We can see that £^ phase (dispersed phase) with the rod shape solidified in the dendrite. And then £b-Fe3Mo3C (continuous phase) solidified between the rod spacing. In Z sample, £b-Fe3Mo3C solidified as dendrite first, and then the £^ phase solidified between the inter-dendrite. The solidification path is ¡§£\ + L ¡÷ £\ + £^ + L ¡÷ £\ + £^ + L+ £b ¡÷ £^ + £b¡¨. £^ phase and £b-Fe3Mo3C are both FCC structures in an ordered phase, and the coherence of lattice is good, with a perfect orientation relationship.
689

Defining and determining the impact of a freshman engineering student's approach to learning (surface versus deep)

Fowler, Debra Anne 15 November 2004 (has links)
When an engineering student attends four or five years of college to become a professional engineer one makes the assumption that they approach this learning process in such a way to gain the most knowledge possible. The purpose of this study is to measure the learning approach (deep versus surface) of first-year engineering students, test the impact of two interventions (journaling and learning strategy awareness) on increasing the deep approach to learning, and determine the relationship of the approach to learning on retention within an engineering program. The study was conducted using a quantitative self-reporting instrument to measure surface and deep learning at the beginning and end of the first and second semesters of the freshman year in an engineering program. Retention was measured as the continuous enrollment of a student in the second semester of the first-year engineering program. Results indicate that the first-year engineering students have a slightly higher level of the deep approach to learning than a surface approach to learning when they begin college. However, the results also indicate that the deep approach to learning decreased during the first semester and during the second semester of their freshman year. A student's approach to learning can be impacted by their prior knowledge, the teaching context, the institutional context or the motivation of the student. Results surrounding the learning strategies intervention also indicate that the first-year engineering students do not possess the strong learning strategies that are anticipated from students accepted into an engineering program with stringent application requirements. Finally, results indicate that a deep approach to learning appears to have a positive relationship and a surface approach to learning appears to have a negative relationship to retention in an engineering program. This study illustrates that incorporating learning theory and the use of current learning strategy measurements contributes to the understanding of a freshman engineering student's approach to learning. The understanding of the engineering student's approach to learning benefits faculty in establishing curriculum and pedagogical design. The benefit to the student is in understanding more about themselves as a learner.
690

Studies On Surface Plasmon Resonance And Related Experimental Methods Using Fixed Plasmon Angle

Prabhu, G Radhakrishna 11 1900 (has links)
Surface plasmon waves are transverse magnetic electromagnetic waves propagating along a dielectric-metal interface. These waves can be excited by resonant absorption of electromagnetic radiation leading to surface plasmon resonance (SPR) at the interface. The resonance is characterised by a reduction in the intensity of the reflected light at the interface due to strong coupling of incident optical radiation to surface plasmons. This gives rise to a minimum at a sharply defined angle of incidence, referred to as SPR angle or plasmon angle. The phenomenon of SPR has been extensively used in the past to develop reflective type optical devices for sensing applications on account of the high dielectric function dependent sensitivity of the SPR angle. Basically, devices which exhibit this phenomenon have a structure consisting of a metal film sandwiched between two dielectrics. The reflectivity of such a device is theoretically modelled based on either theory of thin films (Fresnel's model) or theory of resonance (Lorentzian model). These models have very effectively predicted the behaviour of such devices based on the shift in SPR angle due to the dielectric function variations. We have been investigating the SPR device for intensity based metrological applications utilising its high angular sensitive reflectivity, with fixed SPR angle. In these intensity based applications or measurements, direct and simple expressions connecting intensity variation to angular change are unavailable in the literature and quantitative estimation or data inversion is based on either curve fitting or iterative methods. Fresnel and Lorentzian models have commonly been used in the experiments but data inversion through the Fresnel model is computationally complex and the Lorentzian model, although less complicated, gives erroneous results due to its approximate nature. In order to obtain a simple expression between intensity variation and the angular change, we have re-looked at the two existing models in order to derive an expression which has the simplicity of the Lorentzian model and the accuracy of the Fresnel model in the experiments with fixed plasmon angles. These efforts have been particularly directed to understand the relationship between intensity variation and meteorologically important properties of such devices. This thesis is an attempt to summarize the computational results which have led us to some novel experimental methodologies which have been used to exploit these devices for inverse type, illumination specific, SPR based applications. The work presented in this thesis is organised in six chapters. Chapter 1, gives an overview of optical sensing, theory of surface plasmons, excitation schemes for surface plasmons, development of the SPR device and its characterisation. It also includes a brief literature review in the area of surface plasmon resonance, covering both the theoretical and experimental aspects. The objectives of the work and the scope of the thesis are also presented. Chapter 2 presents the existing models of SPR device, based on Fresnel's and the Lorentzian models. These models allow reflectance calculations from knowledge of either the optical parameters that describe the layers or the parameters of the waves that propagate through them. Using these models, the inverse problem of estimating either the angle of incidence or the optical constants of the layers of the sensors utilizing the intensity based measurements is generally difficult. In order to solve this problem where the plasmon angles are fixed, a modified formalism for the angle scanned SPR spectrum of a three-layered SPR sensor is presented in this chapter. The new formalism regroups the wave vector parameters of Lorentzian resonance theory into a set of non-dimensional parameters 1, 4K and R. The new reflectivity index (1), which is the ratio of reflectance to the absorptance, has been introduced to help explain the physical processes underlying the device operation in the high sensitivity region of the characteristics. The parameter 4Kis a constant of the device and it depends on the dielectric constants of the device. This is a new SPR index and is identified at a point where reflectance and absorptance match. Parameter R is related to the loss mechanisms in the device and will be explained in detail in Chapter 3. This simple model links the new reflectivity index (1) to the angular detune from SPR angle (ΔƟ) and it brings out a parabolic variation of ΔƟ with 1. In this chapter the mathematical derivation of the proposed model is presented and the significance of the new parameters 1, 4Kand Rare discussed. Chapter 3 evaluates the characteristic nature of errors associated with the predictions from the proposed model and presents methods for neutralizing them. It is demonstrated with the help of the function K which is linearly dependant on 1, that the proposed model predicts the reflectance from the wave vector parameters as accurately as the Fresnel's model. This R parameter explains the slowly varying nature of the radiative loss with the angle of incidence and this variation contributes significantly to the SPR characteristics. As a consequence, it is found that the SPR characteristics can be represented as a sum of two primary functions which are parabolic and linear, respectively, and this leads to the easy explanation of the SPR characteristics. The present chapter also discusses a new observation that the angle-scanned SPR spectrum can be accurately described using a straight line in intercept form. The intercept value depends on 4Kand the slope depends on K. In addition to this, this chapter discusses practical methods for estimation of the intercept and the slope of such a straight line which are functions of the key wave vector parameters. A detailed discussion on the proposed model highlighting its advantages for inverse type, illumination specific, SPR-based applications with fixed SPR angle is also presented. Chapter 4 describes the applications of the proposed model for optical constant measurements. The first part highlights a new approach for the determination of the dielectric constants of the metal film used for the optimised- or nearly-optimised SPR sensors using the proposed model. In the complex dielectric constant, the real part is calculated from the SPR angle and the imaginary part from 4K. A discussion on the dielectric constant study of silver and gold metal film is presented. The advantages of the proposed approach such as its simplicity and direct methodology are then discussed. The second part of the chapter also proposes a new approach to carry out measurements on the absorbance of the medium with enhanced sensitivity utilising the parameter 4K It describes a computational study on the variation of 4K values with the dielectric function and highlights the relationship of 4K variation due to the imaginary part of the dielectric function (absorption) of the samples. The physical processes causing a change in the value of 4Kdue to absorption is also discussed along with some computational results. Chapter 5 reports the study carried out to bring out the importance of the new index,4K in metrological applications. Based on the new model, the effect of the laser beam divergence on SPR curve is studied. This chapter first of all discusses the design of the SPR device and the new methods for the development and characterisation of such a device. Details of the experimental procedure for laser divergence evaluation are proposed along with some of the significant computational results. Furthermore, a few applications such as focal length measurement of optical lenses, micro-displacement measurement based on the divergence of the laser beam are also reported. Since the SPR characteristics can be represented easily using the new model, the angular dependent intensity variation can be utilised for some metrological applications with simple data processing. In this context, the high angular sensitivity of the SPR device is studied and some applications such as micro-displacement measurement, pressure measurement and optical wedge angle measurement are included to highlight the above advantages. The last chapter, Chapter 6, gives a summary and conclusions of the work presented in the thesis. The scope for future investigations is also included in this chapter.

Page generated in 0.066 seconds