• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 3
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Effect of Aluminum Sulfate and Sodium Alumniate on the Drainage and Retention Properties of Fibrous Suspensions

Luu, Wing T. January 2005 (has links) (PDF)
No description available.
22

Ordering of particulate suspensions in Couette flow at moderate Reynolds numbers

Bell, Martin Derek January 1990 (has links)
A remarkable ordering phenomenon has been seen to occur when a suspension of particles undergoes shear at particle Reynolds numbers of the order of or greater than one in the annular gap of a Couette type shearing device. This particulate ordering was observed and studied with both suspensions of rigid spheres and suspensions of polystyrene latex aggregates formed in the presence of shear within the gap. Each of these systems was studied under a variety of initial conditions in order to define the particular flow conditions required for particle alignment to occur. It was found that particulate ordering occurred under similar conditions to those used by Segré and Silberberg (35) to observe the "necklace formations" that formed within particulate suspensions flowing inside tubes. The separations between aligned particles was found to be strongly dependent on the particle Reynolds number and the ratio between the particle diameter and the width of the annular gap. An insight into the hydrodynamic interactions occurring was provided by the comparisons made between the ordered aggregates and the ordered rigid spheres under similar flow conditions. / Science, Faculty of / Chemistry, Department of / Graduate
23

Hydrodynamic and electric particle interactions in suspensions

Arp, Paul Alexander January 1975 (has links)
No description available.
24

The effect of shear on dewatering of flocculated suspensions

Gladman, Brendan Robert January 2005 (has links)
The ability to separate a suspension into its respective solid and liquid constituents is an important requirement in the chemical, wastewater and mineral industries. Typically, separation occurs in open, large diameter tanks known variously as thickeners, settlers or clarifiers. The design and operation of these devices have been based, until recently, on kinematic models and macroscopic mass balances. The problem with these approaches is that consolidation in the bed is not described accurately and consequently, the area required for thickening is often grossly overestimated. Recently, Buscall and White [24] proposed a 1−D phenomenological theory of dewatering that encompasses both sedimentation and consolidation, providing a more solid grounding for understanding, simulating and optimising dewatering in a range of devices, including thickeners. This theory identifies two important rheological parameters; a concentration dependent yield stress, Py (φ) and hindered settling function, R(φ). / Despite representing a significant improvement over a kinematical approach, Buscall and White’s dewatering theory involves a number of simplifications so that in practise, simulations often underestimate dewatering in full sized thickeners [97, 153]. One aspect of thickening that is poorly understood is the effect of raking. At the base of the thickener, a rake transports the thickened sediment to the outlet. An additional effect from raking is to increase the average solid concentration in the underflow [33, 46]. Raking introduces normal and shear stresses, which cannot be described within a one-dimensional framework. Therefore, observed differences between predicted and measured thickener underflow concentrations are attributed to the action of the rake. / The aim of this thesis is to develop a better understanding of how shear stresses effect compressional dewatering in both pilot and full scale thickening operations. Before attempting to quantify the effect of shear on dewatering, it was considered necessary to first establish that the 1-D model was capable of predicting dewatering in the absence of shear. Up until now, no known studies have been undertaken to validate the model under controlled conditions. To approximate one-dimensional flow with no shear, a tall narrow column with no moving parts was used. Two solid fluxes and several bed heights were studied, and the outputs from the column were compared with the 1-D model predictions. The results show that under ideal conditions, the model predicted the underflow solid concentration to within 10 %. / The effect of shear on dewatering was investigated using a Couette shear device. Couette geometry was chosen to provide uniform shear. Since in Couette flow, no normal stresses act in the direction of rotation, the mechanism behind dewatering can investigated. These experiments showed that shear caused dewaterability to improve up to a critical shear rate, beyond which dewaterability was adversely affected. The relationship between this critical shear rate and flocculation conditions was investigated by using different flocculant dosages. The shear modified Py (φ,γ) and R(φ,γ) can be input to the 1−D model, thereby incorporating shear indirectly. As a result, the model predicted an order of magnitude increase in solids flux. / The above procedure was used to characterise the dewaterability of a real thickener feed as a function of shear rate. The optimum shear rate was determined by finding the minimum R(φ,γ). Then, Py(φ) and R(φ) were input into the thickener model. The predicted underflow concentration could then be compared against plant data. / Even when shear is taken into account, the model still under predicts the performance of the thickener. To understand this result, the pilot column work was revisited since the control over experimental conditions was far greater. To introduce shear, concentric cylinders were installed in the column and rotated at a fixed speed. Thus, the effect of shear and bed height on underflow density were determined at different rates of shear. This showed that the underflow concentration increased with bed height; a result not expected based on the model prediction. The effects of shear on underflow density were secondary to bed height. / The bed height dependence can only be explained if dewatering is not steady but changes over time. For a four metre bed height the residence time is eight times longer than a one metre bed. Improvements in dewatering could be related to time dependent restructuring of aggregates which would result in an associated change in R(φ). By fluidizing suspensions for times corresponding to the residence times in the tall column, R(φ) and Py(φ) could be determined, as functions of volume fraction and time. Aggregate properties including structure and density were measured before and after fluidization using focussed beam reflectance measurement (FBRM) and floc density analysis (FDA).
25

Piston-driven flow of highly concentrated suspensions /

Lukner, Ralf Bernhard, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 228-233). Available also in a digital version from Dissertation Abstracts.
26

Electrical dispersion of liquids.

Wynn, Nyunt. January 1969 (has links)
No description available.
27

Kinetic modeling of dispersion polymerization in organic media

Ahmed, Syed Farid 08 1900 (has links)
No description available.
28

Drop formation from particulate suspensions

Furbank, Roy Jeffrey. January 2004 (has links) (PDF)
Thesis (Ph. D.)--School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 2005. Directed by F. Joseph Schork. / Schork, F. Joseph, Committee Chair ; Morris, Jeffrey F., Committee Co-Chair ; Forney, Larry J., Committee Member ; Breedveld, Victor, Committee Member ; Mucha, Peter J., Committee Member ; Smith, Marc K., Committee Member. Includes bibliographical references.
29

Rheological characterisation of highly concentrated mineral suspensions using an ultrasonic velocity profiler

Kotze, Reinhardt January 2007 (has links)
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2007 / The rheological behaviour of non-Newtonian, highly concentrated and non-transparent fluids used in industry have so far been analysed using commercially available instruments, such as conventional rotational rheometers and tube viscometers. When dealing with the prediction of non-Newtonian flows in pipes, pipe fittings and open channels, most of the models used are empirical in nature. The fact that the fluids or slurries that are used normally are opaque, effectively narrows down the variety of applicable in-line rheometers even further, as these instruments are normally based on laser or visible light techniques, such as Laser Doppler Anemometry. Electrical Resistance Tomography is a non-invasive method used to look into opaque suspensions during pipe flow, but cannot be used to measure in-line rheometry. In this research, an Ultrasound Pulsed Echo Doppler Velocity Profile technique (UVP), in combination with a pressure difference (PD) was tested to provide in-line measurement of rheological parameters. The main objective ofthis research was to evaluate the capabilities of the UVP-PD technique for rheological characterisation of different concentrations of non-transparent non-Newtonian slurries. A unique pipe viscometer was designed and constructed. It consisted of four pipes, one of stainless steel and three of PVC, linked to an in-line mass-flow meter and equipped with two different ranges of pressure transducers on each pipe. The stainless steel pipe, with an inner diameter of 16 mm, was equipped with a specially designed flow adapter for in-line rheological characterisation using the UVP-PD method. The three PVC pipes with different diameters of 9 mm, 13 mm and 16 mm served as a tube viscometer for in-line rheological characterisation of mineral suspensions.
30

Electrical dispersion of liquids.

Wynn, Nyunt. January 1969 (has links)
No description available.

Page generated in 0.1226 seconds