• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • Tagged with
  • 16
  • 16
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cleaner Futures: Covalent Organic Frameworks for Sustainable Degradation of Lignocellulosic Materials

Lan, Pui Ching 05 1900 (has links)
As countries pledge their commitment to a net-zero future, much of the previously forgotten climate change research were revitalized by efforts from both governmental and private sectors. In particular, the utilization of lignocellulosic materials saw a special spotlight in research interest for its abundance and its carbon removal capability during photosynthesis. The initial effort in mimicking enzymatic active sites of β-glucosidase will be explored. The crystalline covalent organic frameworks (COFs) allowed for the introduction of a variety of noncovalent interactions, which enhanced the adsorption and the catalytic activity against cellobiose and its glycosidic bonds. The physical processes associated with this reaction, such as the kinetics, equilibrium, and activation energies, will be closely examined and compared with existing standard materials and comparable advanced catalysts. In addition, several variants of COFs were synthesized to explore the effect of various noncovalent interactions with cellobiose. A radical-bearing COF was synthesized and characterized. The stability of this radical was examined by electron paramagnetic resonance spectroscopy (EPR) and its oxidative capability tested with model lignin and alcoholic compounds. The reaction products are monitored and identified using gas chromatography-mass spectroscopy (GC-MS). An oxidative coupling of phenol was explored, and its initial results are presented in chapter 5.
2

Lignin Valorization Through Heterogeneous Photocatalysis Towards a Sustainable Circular-Economy Mindful Approach

Matos Pereira Lima, Filipe 28 July 2022 (has links)
Renewable materials have been put into the spotlight as the demand for environmentally responsible feedstocks grows yearly. Lignin, an abundant and renewable aromatic polymer, which can source a diverse cast of derivative structures, has yet to rise to the potential it possesses as a material in high technological applications. The expansion of studies and growing interest in its versatility has brought forth materials such as lignin nanoparticles, coatings, films, second generation alcohols, phenolic building blocks for drug synthesis, and many others. Among the many valorization methods thus far pursued, photochemical methods have received relatively low representation, incurring several challenges stemming from less desirable interactions of lignin as a substrate directly with light. As the search for clean, low-emissive processes with high scale-up potential for lignin valorization continued, advances and studies on the benefits and challenges on the use of photochemistry with this class of compounds became the focus of this work. This thesis will primarily aim to highlight our efforts to find photocatalytic materials and systems to achieve lignin valorization, discuss its limitations and benefits, and provide a pathway towards potential applications of these reactions. Our core values were to find conditions that worked well, but also translating that success into systems that could be greener and less dangerous or environmentally impactful. We can report to have achieved single-product yields of over 2% in protolignin valorization reactions using Pd and Au based nanoparticles, supported on niobium-based materials. We have also reached up to 2% yields in visible-light reactions using CdSe quantum dots. While literature reports tend to overwhelmingly focus on lignin models, we have kept ours on real lignin, which while more complex and challenging, does present more relevant results in the long run for this field. These results, in addition to molecular model valorization experiments, present a promising prospect for the application of photocatalysis in lignin valorization for the future.
3

An Investigation of Transition Metal Catalysts for Cyanohydrin Hydration: The Interface of Homogeneous and Heterogeneous Catalysis

Downs, Emma 29 September 2014 (has links)
Acrylic monomers are important materials that represent a large portion of the economy. The current industrial synthesis hydrates cyanohydrins with sulfuric acid, a process which results in large amounts of waste and significant energy costs. A transition metal catalyzed, acid free hydration of cyanohydrins would be beneficial from both economic and environmental standpoints. However, this reaction is challenging, as many catalysts are poisoned by the cyanide released when cyanohydrins degrade. Therefore the development of a catalyst that is resistant to cyanide poisoning is the ideal method to circumvent these difficulties. This dissertation describes several cyanohydrin hydration catalysts, with an emphasis on nanoparticle catalysts. These are at the interface between the homogeneous and heterogeneous catalysts that have been explored previously for this reaction. Chapter I surveys previous studies on nanoparticle catalysts for nitrile hydration and their implications for the hydration of cyanohydrins. Chapter II reports on the homogeneous platinum catalysts [PtHCl(P(NMe2)3)2] and [PtH2(P(NMe2)3)2], exploring secondary coordination sphere effects to enhance nitrile hydration. Chapter III describes another example of this type of complex, [PtH2(P(OMe)3)2], that forms catalytically active nanoparticles under reaction conditions. Explorations of the reactivity of this catalyst with nitriles and cyanohydrins are also described in this chapter. Chapter IV investigates a silver nanoparticle catalyst with a water soluble phosphine (1,3,5-triaza-7-phosphaadamantane) ligand for its activity towards the hydration of nitriles and cyanohydrins. The results of the degradation of the nanoparticles in the presence of cyanide are also described. Chapter V reports on the preparation and examination of a solid supported nickel catalyst for cyanohydrin hydration. Finally, Chapter VI describes how these investigations have made progress towards the development of a cyanide resistant nitrile hydration catalyst. This dissertation includes previously published and unpublished co-authored material. / 2015-09-29
4

Transition Metal Catalysis for Selective Synthesis and Sustainable Chemistry

Verendel, J. Johan January 2012 (has links)
This thesis discusses the preparation and use of transition-metal catalysts for selective organic chemical reactions. Specifically, two different matters have been studied; the asymmetric hydrogenation of carbon-carbon double bonds using N,P-ligated iridium catalysts and the metal-catalyzed transfer of small molecules from biomass to synthetic intermediates. In the first part of this thesis, chiral N,P-ligands were synthesized and evaluated in iridium catalysts for the asymmetric hydrogenation of non- and weakly functionalized alkenes (Papers I & II). The new catalysts were prepared via chiral-pool strategies and exhibited superior properties for the reduction of certain types of alkenes. In particular, some of the catalysts showed excellent activity and selectivity in the enantioselective reduction of terminal alkenes, and the preparation of a modular catalyst library allowed the asymmetric hydrogenation of a wide range of 1,1-disubstituted alkenes with unprecedented efficiency and enantioselectivity (Paper III). Methods for the selective preparation of chiral hetero- and carbocyclic fragments using iridium-catalyzed asymmetric hydrogenation as an enantiodetermining key step were also developed. A range of elusive chiral building blocks that have applications in pharmaceutical and natural-product chemistry could thus be conveniently prepared (Papers IV & V). The second part of this thesis deals with the catalytic decomposition of polysaccharides into sugar alcohols and the incorporation of their decomposition products into alkene substrates. Iridium-catalyzed dehydrogenative decarbonylation was found to decompose polyols into CO:H2 mixtures that could be used immediately in the ex situ low-pressure hydroformylation of styrene (Paper VI). The net process was thus the hydroformylation of alkenes with biomass-derived synthesis gas.
5

Feedback Kinetics in Mechanochemistry: The Importance of Cohesive States.

Hutchings, B.P., Crawford, Deborah E., Gao, L., Hu, P., James, S.L. 31 January 2020 (has links)
No / Although mechanochemical synthesis is becoming more widely applied and even commercialised, greater basic understanding is needed if the field is to progress on less of a trial‐and‐error basis. We report that a mechanochemical reaction in a ball mill exhibits unusual sigmoidal feedback kinetics that differ dramatically from the simple first‐order kinetics for the same reaction in solution. An induction period is followed by a rapid increase in reaction rate before the rate decreases again as the reaction goes to completion. The origin of these unusual kinetics is found to be a feedback cycle involving both chemical and mechanical factors. During the reaction the physical form of the reaction mixture changes from a powder to a cohesive rubber‐like state, and this results in the observed reaction rate increase. The study reveals that non‐obvious and dynamic rheological changes in the reaction mixture must be appreciated to understand how mechanochemical reactions progress. / Engineering and Physical Sciences Research Council. Grant Number: EP/L019655/1
6

Sustainable chemistry solutions for industrial challenges: mechanisms of PVC degradation and stabilization; reversible ionic liquids for CO₂ capture; efficient Suzuki coupling of basic, nitrogen containing substrates

Rumple, Amber C. 08 June 2015 (has links)
The thermal degradation of polyvinyl chloride (PVC) is a significant processing challenge which can lead to deleterious mechanical and optical properties in a wide range of products. Synergetic studies on PVC model compounds and blends of bulk PVC provide unique insights into the thermal degradation and stabilization pathways in the presence of common additives. Model PVC compounds were selected to replicate specific defects (e.g., allylic, vicinal and tertiary) and tacticity (i.e., utilizing stereochemistry to investigate tacticity) commonly found in PVC. Model studies were conducted neat (solvent-free) with metal carboxylates. Experimental results highlight that the allylic and tertiary defects are more reactive than pristine PVC and isotactic sites are more reactive than their syndiotactic counterparts. Zinc stearate was found to act not in the role of substituent, but as a Lewis acid by facilitating dehydrochlorination of labile chlorides. This prevents the accumulation of hydrogen chloride and autocatalytic chain unzipping. In contrast, calcium stearate delayed the formation of zinc chloride, a much stronger Lewis acid than zinc stearate, through an ion exchange process to form calcium chloride. Thermal weight loss studies using blends of bulk PVC proved critical in transferring mechanistic insights into the context of a polymeric matrix. Post-combustion carbon capture has traditionally involved the use of aqueous alkanol amine solutions. The regeneration of such systems, however, can be costly and energy intensive. We have developed an alternative system utilizing silylated alkylamines to reversibly capture CO2 under near ambient conditions. The silyl amines developed capture CO2 through chemical reaction to form reversible ionic liquids (RevIL). RevILs utilize no added water and are tunable by molecular design allowing us to influence industrially relevant carbon capture properties such as viscosity, temperature of reversal, and enthalpy of regeneration, while maximizing overall CO2 capture capacity. We demonstrate a strong structure-property relationship among the silyl amines where minor structural modifications lead to significant changes in the bulk properties of the RevIL. Amine containing substrates are important building blocks for a variety of biological and pharmaceutical compounds. However, application of the otherwise versatile Suzuki reaction to these substrates has proved challenging due to either ligation of the amine to the palladium or to electronic effects slowing the oxidative addition step. Conventional methods to overcome these challenges involve protection-deprotection strategies or the use of designer ligands to facilitate reaction. We have shown that application of CO2 pressure and adjusting the water content of the reaction system facilitate the Suzuki coupling of 4-amino-2-halopyridines in high yield with the simple Pd(TPP)2Cl2 catalyst. The protocol was expanded to 2-halopyridines. The results of these investigations will be discussed.
7

Ruthenium-Catalyzed Synthesis of Biaryls through C–H Bond Functionalizations

Diers, Emelyne 14 October 2013 (has links)
No description available.
8

Iron- and Ruthenium-Catalyzed Site-Selective C–C Forming Direct C–H Functionalizations

Graczyk, Karolina 23 March 2015 (has links)
No description available.
9

Des esters arylboroniques aux arylnitrones : synthèse d'esters arylboroniques et nouvelle réaction d'arylation de nitrones cycliques / From arylboronic esters to arylnitrones : synthesis of arylboronic esters and new arylation reaction of cyclic nitrones.

Demory, Emilien 20 December 2012 (has links)
Au cours de ce travail, nous nous sommes intéressés à la préparation d'esters arylboroniques issus de l'hexylène glycol et porteurs de substituants électroattracteurs. Nous avons d'abord étudié la borylation catalysée au palladium d'halogénures d'aryle pauvres en électrons par MPBH, substitut économique du PinBH. Il s'est avéré que MPBH était moins performant sur ce type de substrats que le PinBH. Nous nous sommes alors tournés vers une borylation par un échange iode/magnésium avec piégeage in situ par le borate MPBOiPr. Cette méthode nous a permis de boryler des iodures d'aryle pauvres en électrons, porteurs de groupes fonctionnels sensibles, de manière propre et sécurisée (pas d'accumulation de magnésien). Elle s'avère applicable à grande échelle (kilogramme). Ces esters arylboroniques ont ensuite été engagés dans des réactions d'addition sur des nitrones, sans succès. Cela nous a amené à développer une nouvelle réaction : l'arylation directe de nitrones cycliques par des halogénures d'aryle. Au cours de l'étude, nous avons démontré l'effet d'accélération de deux additifs introduits en quantité catalytique : un sel de cuivre et l'acide pivalique. Les réactions sont ainsi rapides et propres, et s'appliquent à des iodures, bromures ou chlorures (hétéro)aromatiques très variés. Pour finir, nous avons effectué une étude mécanistique qui nous a permis de proposer deux mécanismes, selon l'additif mis en jeu. / The first part is focused on the preparation of arylboronic esters derived from hexylene glycol, and bearing electron withdrawing substituents. We studied the palladium catalyzed borylation of electron-poor aryl halides with MPBH, an economic substitute for PinBH. MPBH, however, was found less efficient than PinBH. Next, a borylation through iodine/magnesium exchange with in situ trapping by the borate MPBOiPr was developed. This method allowed the borylation of aryl iodides carrying electron withdrawing and sensitive substituents, cleanly and safely (no accumulation of organomagnesium species), and scale up was possible (kilogram scale). Our attempts to use these arylboronic esters in addition reaction onto nitrones were unsuccessful. This led us to develop a new reaction: the direct arylation of cyclic nitrones with aryl halides. The coupling is dramatically accelerated by catalytic amounts of either a copper salt or pivalic acid. The reactions are fast and clean, and various (hetero)aryl iodides, bromides and chlorides can be used. Last, a mechanistic study allowed us to propose a mechanism for each additive.
10

Conversion of renewable feedstocks into polymer precursors and pharmaceutical drugs

Shi, Yiping January 2018 (has links)
Fossils fuels are highly demanded in everyday life domestically or industrially. Fossil fuels are finite resources and they are rapidly depleting, as such alternative renewable feedstocks are sought to replace fossil fuels. Tall oil from paper processing and cashew nut shell liquid from the cashew nut industry are the two major renewable sources we studied, they are both waste byproducts, and have the potential to be converted into value-added materials. Tall oil from the paper industry mainly contained tall oil fatty acid, and under isomerising methoxycarbonylation with palladium catalyst, dimethyl 1,19-dimethyl nonadecanedioate can be obtained. This difunctional ester, dimethyl 1,19-dimethyl nonadecanedioate, is converted to diols, secondary and primary diamines by a hydrogenation reaction with ruthenium complexes of 1,1,1-tris(diphenylphosphinometyl)ethane (triphos) as catalysts in the presence of water, amine or aqueous ammonia respectively. In the case of aqueous ammonia it is necessary to use a two step reaction via diol to obtain 1,19-diaminononadecane. Diesters, diols and diamines are useful precursors for the synthesis of polyesters and polyamides. Difunctional substrates with 8-19 carbon chains are all tolerated under the reaction conditions and are successfully converted to the corresponding diols and diamines in high yields. Under similar hydrogenation conditions with the same ruthenium catalyst, cyclic products were predominantly produced with decreased chain length. N-heterocycles, which are important building blocks for the synthesis of drug molecules, were formed from the hydrogenation of diesters with 4-7 carbon chains in the presence of an amine. Another polymer precursor, ε-caprolactam, which is the precursor for Nylon 6, is obtained in a reasonable yield from both adipic acid and adipate esters together with aqueous ammonia in the presence of ruthenium catalyst. Cashew nut shell liquid was also converted into useful medical drugs, such as norfenefrine, rac-phenylephrine, etilefrine and fenoprofene in reasonable yields. Most of these drug molecules have been formed from 3-vinylphenol by catalytic hydroxyamination followed by methylation or ethylation. 3-Vinylphenol was synthesised from cardanol by ethenolysis to 3-non-8-enylphenol followed by isomerising ethenolysis, whilst the N-alkylation reactions used methyl or ethyl triflate to avoid dialkylation. Fenoprofene was formed by firstly O-phenylating cardanol then ethenolysis followed by isomerising ethenolysis to form 1-phenoxy-3-vinylbenzene. Methoxycarbonyation followed by hydrolysis formed the final product in good yield. Our methods start from renewable waste materials and avoid unpleasant reagents in the original stoichiometric synthesis of those drugs, for example, cyanide is no longer essential for the synthesis of fenoprofene.

Page generated in 0.1038 seconds