• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of pulmonary stretch receptor afferents in swallow-breathing coordination: a comparison of central respiratory rhythm versus mechanical ventilation on swallow in a decerebrate feline model

Horton, Kofi-Kermit A. 01 July 2018 (has links)
Swallowing is an essential motor act that coordinates the movement of food or saliva from the mouth through the pharynx and into the esophagus while protecting the upper airways from aspiration of those materials. Disordered swallowing, or dysphagia, results when bolus movement from the oropharyngeal phase into the esophageal phase is uncoordinated. Dysphagia directly causes or increases the risk of aspiration during swallowing in many clinical pathologies including Parkinson’s disease, Alzheimer’s disease, cerebrovascular incidents (stroke) in addition to being prevalent among the elderly population. The coordination between breathing and swallowing is mediated through the interaction of the swallow and respiratory Central Pattern Generators (CPGs) located in the brainstem. In the pharyngeal phase of swallow respiratory airflow is temporarily interrupted, and then reset, when the bolus moves through the pharyngeal space. The lungs retain enough air during the swallow apnea to protect the lower airways from accidental aspiration of residual bolus material, modulate the latency to initiate the swallow, while providing sensory feedback for processing within the brainstem network. The timing of the pharyngeal phase of swallow with respiration occurs across a continuum of lung volumes. Following swallow, the latency to initiate inspiration of the subsequent respiratory cycle increases. The swallow-mediated increase in cycle duration on respiration may depend upon the central processing of pulmonary afferents that may also affect reconfiguration of the respiratory CPG to express the swallow CPG. The peripheral and central mechanisms of swallow-breathing coordination remain poorly understood. Here, the relationship between central inspiratory output and the resultant mechanical inflation of the lungs was manipulated and dissociated to test the hypothesis that a centrally- and peripherally-mediated “swallow gate” coordinates swallow initiation with central respiratory activity and vagally-mediated pulmonary feedback. We obtained data from decerebrate adult cats of either sex that fully recovered from isoflurane anesthesia prior to the decerebration procedure. Fictive swallows were elicited using electrical stimulation of the superior laryngeal nerves (SLN) or injection of water (Water) into the pharyngeal cavity. Both stimuli were presented at random during the central respiratory cycle and/or the mechanical ventilation cycle. Mechanical ventilation was either triggered in-phase with phrenic discharge activity or it was set independent of phrenic discharge activity. These two modes of mechanical ventilation facilitated our ability to analyze the collective and individual effect of lower airway feedback on swallow-breathing coordination. The efferent discharge activities were recorded from the right hypoglossal (XII), left phrenic (Phr), left lumbar iliohypogastric (Lum) and right vagus (X) or the right recurrent laryngeal (RLN) nerves using silver bipolar hooked electrodes. All nerve activity was full-wave rectified, amplified, RC integrated (τ=200-500 ms) and low-pass filtered prior to analysis for effects on swallow-breathing coordination across stimulation-ventilation conditions. We observed post-inspiratory type (Post-I) and expiratory type (Exp) swallows that produced discrete effects on central respiratory rhythm across all conditions. The Post-I type swallows disturbed the duration and amplitude of preceding central inspiratory activity, without affecting the duration of central expiratory activity. The Exp type swallows prolonged central expiration but produced no effect on central inspiratory activity. We observed that lung inflation negatively modulated swallow initiation during fixed mechanical ventilation in the absence of central respiratory output, i.e., during central apnea. Most swallow elicited during central apnea initiated during periods of low lower airway afferent feedback. Collectively, these findings extend the role for lower airway feedback beyond its role as a provider of lung afferent surveillance and identifies lower airway feedback as a modulator of swallow-breathing coordination.
2

Infantiele koliek en suig -, sluk - en asemhalingskoördinasie by jong babas

Degenaar, M.J. (Hanlie) January 2014 (has links)
Introduction and rationale: Clinical experience with infants presenting with feeding difficulties and increasing referrals of infants with colic led to this study. There is uncertainty whether the speechlanguage therapist should play a role in the management of this condition. Despite extensive clinical research into the multiple factors related to the condition, the etiology of infantile colic has not yet been established. Suck- swallow-breathing coordination (SSBC), which is key to successful feeding, has not yet been investigated as a factor in this condition. Goals: The goal of the study was to give a comprehensive description of the symptoms and the SSBC of a group of young infants with colic. Sub-goal 1 was to compile a list of symptoms based on a description by parents of infants with infantile colic, which could be used to compare symptoms of a group of infants with the condition to a group without the condition. Sub-goal 2 was to describe SSBC, in a group of infants with the condition, by conducting a clinical assessment. Sub-goal 3 was to compare SSBC in a group of infants with colic to a group without the condition of the same age. Method: A descriptive survey design and interview guide was used in Phase 1. The parents of 60 infants with colic participated in this study. A correlation research design (Phase 2) and the List of symptoms for Infantile Colic (compiled in Phase 1) as well as the Assessment Protocol for SSBC (compiled in Phase 2) were used. A new research group of 50 participants with infantile colic and a control group of 28 participants with the condition, whose ages correlated with those of the research group, was selected. An interview was conducted with the parents of all participants. SSBC was clinically assessed in all the participants. Results: Parental description of infantile colic resulted in a comprehensive list of 27 symptoms. Audible swallowing of air and a feeding duration of more than 20 minutes were described more by parents than found in the literature. Statistically significant differences were found when the postural control and SSBC of the research group were compared with the control group. The difficulties with SSBC differed across the age categories of the participants. Conclusion: The study indicated that infantile colic is related to a disturbance in postural control and components of SSBC, and infants with the condition have subtle feeding difficulties. The speech-language therapist therefore has a role to play in the clinical assessment of infantile colic and the development of treatment strategies. / Dissertation (MA)--University of Pretoria, 2014. / lk2014 / Speech-Language Pathology and Audiology / MA / Unrestricted

Page generated in 0.1481 seconds