• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Receptivity Studies on a Swept-Wing Model

Woodruff, Matthew Jeffery 2011 May 1900 (has links)
A series of flight tests was performed using a swept-wing model mounted on a Cessna O-2 aircraft. The crossflow waves on the airfoil were excited by pneumatic spanwise-periodic distributed roughness elements (DREs). The objective of the experiment was to determine the roughness receptivity i.e. the relationship between roughness height and the amplitude of the unstable crossflow wave. The local skin-friction variation was measured using an array of calibrated and temperature-compensated hotfilm sensors. The amplitudes of the disturbance shear stress were compared to the amplitudes of the DREs. It was found that there is a relationship between the shear stress and DRE amplitude that needs to be studied more before any definitely conclusions can be made. It was also found that the sensitivity of the crossflow to DREs is highly dependent on the freestream turbulence levels.
2

On stability and receptivity of boundary-layer flows

Shahriari, Nima January 2016 (has links)
This work is concerned with stability and receptivity analysis as well as studies on control of the laminar-turbulent transition in boundary-layer flows through direct numerical simulations. Various flow configurations are considered to address flow around straight and swept wings. The aim of this study is to contribute to a better understanding of stability characteristics and different means of transition control of such flows which are of great interest in aeronautical applications. Acoustic receptivity of flow over a finite-thickness flat plate with elliptic leading edge is considered. The objective is to compute receptivity coefficient defined as the relative amplitude of acoustic disturbances and TS wave. The existing results in the literature for this flow case plot a scattered image and are inconclusive. We have approached this problem in both compressible and incompressible frameworks and used high-order numerical methods. Our results have shown that the generally-accepted level of acoustic receptivity coefficient for this flow case is one order of magnitude too high. The continuous increase of computational power has enabled us to perform global stability analysis of three-dimensional boundary layers. A swept flat plate of FSC type boundary layer with surface roughness is considered. The aim is to determine the critical roughness height for which the flow becomes turbulent. Global stability characteristics of this flow have been addressed and sensitivity of such analysis to domain size and numerical parameters have been discussed. The last flow configuration studied here is infinite swept-wing flow. Two numerical set ups are considered which conform to wind-tunnel experiments where passive control of crossflow instabilities is investigated. Robustness of distributed roughness elements in the presence of acoustic waves have been studied. Moreover, ring-type plasma actuators are employed as virtual roughness elements to delay laminar-turbulent transition. / <p>QC 20161124</p>
3

Tangential leading edge blowing for flow control on non-slender delta wings

Chard, James January 2018 (has links)
In the military arena there is an increase in demand for Low Observable (LO) flight vehicles. This drive for low observability imposes limits on Leading Edge (LE) sweep angles and prohibits the use of a tailplane/fin resulting in unconventional configurations; a typical example of which are Unmanned Combat Aerial Vehicles (UCAVs). This class of aircraft poses stability and control problems due to the early onset of flow separation. The focus of this project is on the on the use of Tangential Leading Edge Blowing (TLEB) as a means of separation suppression on such vehicles. This project is unique in that the TLEB slot is positioned on the wing lower surface facing the oncoming freestream. Also, the model in this project is representative of the outboard panel of a UCAV wing, a geometry on which TLEB has not been explored in the past. A swept wing model (LE sweep = 47 degrees, AR = 3) was designed. The model has a TLEB nozzle with a slot on the lower surface at approx. 1% yawed chord that spans 0.58 m (approx. 70% LE length). Baseline wing characteristics were obtained with the full slot exposed. The wing showed a variation in pitch between CL = 0 and 0.6 which from oil flow visualisation is believed to be due to laminar separation. At CL = 0.6 there is a positive pitch break which flow visualisation suggests is due to the occurrence of a LE vortex. Sensitivity studies for slot configuration, Re number and transition fixing were carried out. The blowing rates 0.0025, 0.005, 0.025, 0.05 were tested for two slot lengths; one full span (0.58 m) and another third span positioned at the midpoint of the full slot. All blowing rates show some suppression of the LE vortex and therefore reduction in severity of the pitch break at CL = 0.6. High blowing rates produce a negative shift in CM, which CFD suggests is due to a large amount of suction produced on the lower wing surface adjacent to the slot exit. This means the available trim power is less than for the lower blowing rates. Wool tuft results for high blowing rates from the middle slot show an increase in streamwise flow at the TE suggesting TLEB is capable of improving the effectiveness of TE devices. The effectiveness of TLEB at low blowing rates has been shown to be high compared to that found in literature. A 1st order analysis of the impact of TLEB on a full scale system shows realistic options.
4

Receptivity of Boundary-Layer Flows over Flat and Curved Walls

Schrader, Lars-Uve January 2010 (has links)
Direct numerical simulations of the receptivity and instability of boundary layers on flat and curved surfaces are herein reported. Various flow models are considered with the aim to capture aspects of flows over straight and swept wings such as wall curvature, pressure variations, leading-edge effects, streamline curvature and crossflow. The first model problem presented, the flow over a swept flat plate, features a crossflow inside the boundary layer. The layer is unstable to steady and traveling crossflow vortices which are nearly aligned with the free stream. Wall roughness and free-stream vortical modes efficiently excite these crossflow modes, and the associated receptivity mechanisms are linear in an environment of low-amplitude perturbations. Receptivity coefficients for roughness elements with various length scales and for free-stream vortical modes with different wavenumbers and frequencies are reported. Key to the receptivity to free-stream vorticity is the upstream excitation of streamwise streaks evolving into crossflow modes. This mechanism is also active in the presence of free-stream turbulence. The second flow model is that of a Görtler boundary layer. This flow type forms on surfaces with concave curvature, e.g. the lower side of a turbine blade. The dominant instability, driven by a vertically varying centrifugal force, appears as pairs of steady, streamwise counter-rotating vortical rolls and streamwise streaks. The Görtler boundary layer is in particular receptive to free-stream vortical modes with zero and low frequencies. The associated mechanism builds on the excitation of upstream disturbance streaks from which the Görtler modes emerge, similar to the mechanism in swept-plate flows. The receptivity to free-stream vorticity can both be linear and nonlinear. In the presence of free-stream turbulence, nonlinear receptivity is more likely to trigger steady Görtler vortices than linear receptivity unless the frequencies of the free-stream fluctuations are very low. The third set of simulations considers the boundary layer on a flat plate with an elliptic leading edge. This study aims to identify the effect of the leading edge on the boundary-layer receptivity to impinging free-stream vortical modes. Three types of modes with streamwise, vertical and spanwise vorticity are considered. The two former types trigger streamwise disturbance streaks while the latter type excites Tollmien-Schlichting wave packets in the shear layer. Simulations with two leading edges of different bluntness demonstrate that the leading-edge shape hardly influences the receptivity to streamwise vortices, whereas it significantly enhances the receptivity to vertical and spanwise vortices. It is shown that the receptivity mechanism to vertical free-stream vorticity involves vortex stretching and tilting - physical processes which are clearly enhanced by blunt leading edges. The last flow configuration studied models an infinite wing at 45 degrees sweep. This model is the least idealized with respect to applications in aerospace engineering. The set-up mimics the wind-tunnel experiments carried out by Saric and coworkers at the Arizona State University in the 1990s. The numerical method is verified by simulating the excitation of steady crossflow vortices through micron-sized roughness as realized in the experiments. Moreover, the receptivity to free-stream vortical disturbances is investigated and it is shown that the boundary layer is most receptive, if the free-stream modes are closely aligned with the most unstable crossflow mode / QC 20101025

Page generated in 0.0531 seconds