• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces

Cvoro, Valentina January 2007 (has links)
Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate. Therefore, to further improve current NOx reduction technologies and assist in the assessment of NOx levels in new and retrofit plant cases, an improved understanding of the impact of burner interactions is required. The aim of this research is two-fold: firstly, to experimentally investigate isothermal flow interactions in multi-burner arrays for different swirl directions and burner pitches in order to gain a better understanding of burner interaction effects within multi-burner furnaces. Secondly, to carry out numerical modelling in order to determine turbulence models which give the best agreement to experimental data. Experimental investigations were carried out using flow visualisation for qualitative and 3D laser Doppler anemometry for quantitative measurements. Numerical modelling was performed using the computational fluid dynamics software, Fluent, to compare performance between k-ε, k- ω and RSM turbulence models. Experimental investigation showed that the recirculation zone of the chequerboard configuration is more sensitive to the change in pitch than that of the columnar configuration. Further, it was found that the smaller pitch is more sensitive to change in configuration than the wider pitch. The analysis of fluctuating components, u’, v’ and w’ showed that the burner flow is highly anisotropic at burner exit. Numerical investigation showed that the k-ω turbulence model consistently performed below the other two models. The statistical comparison between k-ε and RSM turbulence models revealed that, for prediction of the swirl velocity profiles, the RSM model overall performed better than the k-ε turbulence model. The visual and statistical analyses of turbulent kinetic energy profiles also showed that the RSM turbulence model provides a closer match to the experimental data than the k-ε turbulence model.
2

Numerical Modeling and Analysis of Fluid Flow and Heat Transfer in Circular Tubes Fitted with Different Helical Twisted Core-Fins

Dongaonkar, Amruta J. 21 October 2013 (has links)
No description available.
3

Numerical modelling of highly swirling flows in a cylindrical through-flow hydrocyclone

Ko, Jordan January 2005 (has links)
<p>Three-dimensional turbulent flow in a cylindrical hydrocyclone is considered and studied by means of computational fluid dynamics using software packages CFX and Fluent. The aim has been to identify the methods that can be used for accurate simulation of the flow in three-dimensional configurations in hydrocyclones at high swirl numbers.</p><p>As a starting point, swirling pipe flows created by tangential inlets, where detailed experimental data were available in literature, were considered. It was found that the velocity profiles for the flow with a swirl number of 2.67 could be predicted accurately using a Reynolds stress model and an accurate numerical discretization on a fine-enough mesh. At a higher swirl number, 7.84, under-prediction in the tangential velocity profiles was observed; however the prediction of the axial velocity profiles was satisfactory. The validated methods were then used to simulate the flow in a cylindrical hydrocyclone at a swirl number as large as 21. The calculated tangential velocity profiles were compared against experimental data measured with a pitometer. Acceptable agreements were recorded except near the geometric axis of the cyclone. Due to the lack of the aircore in the numerical model, disagreements near the axis of the cyclone could be expected to some extent.</p><p>Numerical experiments performed in the present work indicated that the RNG k-ε model is not likely to be capable to predict highly swirling flows accurately and a Reynolds stress model is required. For three-dimensional models, where the computing capacity and the available memory set strong restrictions on the computational mesh, optimizing the maximum mesh resolution available play an important role on the accuracy and stability of the solution procedure. The most stable results in the present study were found using the Reynolds stress model proposed by Launder et al. on an as regular and structured mesh as possible using a higher order discretization scheme in Fluent. Therefore, the meshing capabilities of the pre-processor, the available turbulence models and the accuracy of the numerical methods must be considered in parallel. Acceptable results were also generated using the Baseline Reynolds stress model implemented in CFX, however, only with a transient procedure which was likely to be more time-consuming.</p><p>Present simulations present a complex flow structure in the cylindrical cyclone with a double axial flow reversal. The effect of such a flow pattern on the fractionation of the fibres with small differences in density needs to be investigated in future studies.</p>
4

Numerical modelling of highly swirling flows in a cylindrical through-flow hydrocyclone

Ko, Jordan January 2005 (has links)
Three-dimensional turbulent flow in a cylindrical hydrocyclone is considered and studied by means of computational fluid dynamics using software packages CFX and Fluent. The aim has been to identify the methods that can be used for accurate simulation of the flow in three-dimensional configurations in hydrocyclones at high swirl numbers. As a starting point, swirling pipe flows created by tangential inlets, where detailed experimental data were available in literature, were considered. It was found that the velocity profiles for the flow with a swirl number of 2.67 could be predicted accurately using a Reynolds stress model and an accurate numerical discretization on a fine-enough mesh. At a higher swirl number, 7.84, under-prediction in the tangential velocity profiles was observed; however the prediction of the axial velocity profiles was satisfactory. The validated methods were then used to simulate the flow in a cylindrical hydrocyclone at a swirl number as large as 21. The calculated tangential velocity profiles were compared against experimental data measured with a pitometer. Acceptable agreements were recorded except near the geometric axis of the cyclone. Due to the lack of the aircore in the numerical model, disagreements near the axis of the cyclone could be expected to some extent. Numerical experiments performed in the present work indicated that the RNG k-ε model is not likely to be capable to predict highly swirling flows accurately and a Reynolds stress model is required. For three-dimensional models, where the computing capacity and the available memory set strong restrictions on the computational mesh, optimizing the maximum mesh resolution available play an important role on the accuracy and stability of the solution procedure. The most stable results in the present study were found using the Reynolds stress model proposed by Launder et al. on an as regular and structured mesh as possible using a higher order discretization scheme in Fluent. Therefore, the meshing capabilities of the pre-processor, the available turbulence models and the accuracy of the numerical methods must be considered in parallel. Acceptable results were also generated using the Baseline Reynolds stress model implemented in CFX, however, only with a transient procedure which was likely to be more time-consuming. Present simulations present a complex flow structure in the cylindrical cyclone with a double axial flow reversal. The effect of such a flow pattern on the fractionation of the fibres with small differences in density needs to be investigated in future studies. / QC 20101207
5

Computational Modeling of Laminar Swirl Flows and Heat Transfer in Circular Tubes with Twisted-Tape Inserts

You, Lishan 16 September 2002 (has links)
No description available.
6

Characterizing, Correlating, and Evaluating Swirl Flow and Heat Transfer in Wavy Plate-Fin Channels with Novel Enhancement Attributes

Shi, Dantong January 2020 (has links)
No description available.
7

Etude expérimentale et numérique de séparateurs gaz-liquide cyclindriques de type cyclone / Experimental and numerical investigation of cyclone gas-liquid separators

Hreiz, Rainier 07 December 2011 (has links)
Ce travail se penche sur l'étude expérimentale et la simulation numérique du GLCC, un séparateur gaz-liquide cyclonique destiné à de l'industrie pétrolière.Les expériences sont menées sur un pilote air-eau. Dans un premier temps, des observations visuelles ont permis de caractériser le fonctionnement du système en fonction des débits d'entrée. L'influence de la géométrie du système ainsi que des propriétés des fluides sont également considérées.Dans un second temps, l'hydrodynamique de l'écoulement tourbillonnaire dans le séparateur est étudiée par vélocimétrie laser Doppler.Cette étude expérimentale, en mettant l'accent sur le rôle important du fillament tourbillonnaire, a permis d'expliquer pour la première fois divers aspects des écoulements tourbillonnaires turbulents. L'analyse des résultats met également en évidence les nombreuses limites du modèle théorique utilisé pour dimensionner les GLCCs.Côté numérique, les écoulements tourbillonnaires en conduite sont étudiés par une approche CFD utilisant le code commercial Fluent 6.3. Les résultats montrent que la CFD peut reproduire correctement les écoulements tourbillonnaires monophasiques. Cependant, en diphasique, les techniques de simulation actuelles ne conviennent pas pour simuler ce type d'écoulement. / This work focuses on the experimental study and numerical simulation of the GLCC, a gas-liquid cyclone separator developed for the oil industry.The experiments are conducted on an air-water pilot. In a first step, visual observations were used to characterize the system operation according to the incoming flow rates. The influence of system's geometry and the fluid's properties are also considered.In a second step, the hydrodynamics of the vortex flow in the separator is studied by laser Doppler velocimetry.This experimental study, focusing on the important role of the vortex filament, allowed to explain for the first time various aspects of turbulent swirling flows. The analysis of the results also highlights the many limitations of the theoretical model used to design the GLCC.On the numerical side, the swirling flows in pipes are studied via the CFD commercial code Fluent 6.3. The results show that CFD can correctly reproduce the single-phase vortex flow.However, for multiphase flow simulations, it is shown that the current simulation techniques are not suitable to simulate this type of flow.
8

Theoretical and experimental study on convective boiling inside tubes containing twisted-tape inserts / Estudo teórico e experimental sobre a ebulição convectiva no interior de tubos com fitas retorcidas

Mogaji, Taye Stephen 25 March 2014 (has links)
This research comprises an experimental and theoretical study on convective boiling inside tubes containing twisted-tape inserts. The demand for more compact and efficient thermal systems, in which the heat exchangers plays an important role, has led to the development and use of various heat transfer enhancement techniques. Among them twisted-tape insert as a swirl flow device is one of the most used. Twisted-tape inserts have been used for over more than one century ago as a technique of heat transfer enhancement applied to heat exchangers. However, the heat transfer augmentation comes together with pressure drop increment, impacting the pumping power and, consequently, the system efficiency. Moreover, until now it is not clear, the operational conditions under which the heat transfer coefficient augmentation by the use of twisted-tape inserts overcomes pressure drop penalty. In the present study, initially, extensive investigations of the literature concerning convective boiling inside plain tubes with and without twisted-tape inserts were performed. This literature review covers pressure drop, heat transfer coefficient and the leading frictional pressure drop gradient and heat transfer coefficient predictive methods during convective boiling inside tubes with and without twisted-tape inserts. Then, pressure drop and heat transfer coefficient results acquired in the present study were obtained in an experimental apparatus of 12.7 and 15.9 mm ID tubes during flow boiling of R134a for twisted-tape ratios of 3, 4, 9, 14 and tubes without inserts, mass velocities ranging from 75 to 200 kg/m2 s, saturation temperatures of 5 and 15°C and heat fluxes of 5 and 10 kW/m2. The experimental results were parametrically analyzed and compared against the predictive methods from literature. An analysis of the enhancement of the heat transfer coefficient and the pressure drop penalty is presented. Heat transfer coefficient increments up to 45% keeping the same pumping power and pressure drop penalty of about 35% were obtained by using twisted-tape relative to tubes without inserts. Additionally, through comparison of the present study experimental results with the predictive methods from the literature for heat transfer coefficient during two-phase flow inside tube containing twisted-tape inserts, it was verified that non of these methods predict satisfactory well the experimental results. However, a new method was develop for predicting the heat transfer coefficient during flow boiling inside tubes containing twisted-tape inserts based on the experimental results obtained in the present study. The predictive method takes into account the physical picture of the swirl flow phenomenon by including swirl flow effects promoted by the twisted-tape inserts. The proposed method predicts satisfactorily well the data obtained in the present study, predicting 89.1% of the experimental data within an error band of ± 30% and absolute mean deviation of 15.7%. / A presente pesquisa trata-se de um estudo teórico e experimental sobre a ebulição convectiva no interior de tubos com fitas retorcidas. A crescente demanda por sistemas térmicos mais compactos e eficientes, nos quais os trocadores de calor apresentam elevada relevância, tem motivado o desenvolvimento de inúmeras técnicas de intensificação de troca de calor, sendo que a utilização de fitas retorcidas é uma das técnicas mais adotadas. Fitas retorcidas são utilizadas como técnicas de intensificação de troca de calor há mais de um século. Entretanto o incremento da transferência de calor é acompanhado do aumento da perda de pressão, que por sua vez implica em aumento da potência de bombeamento, e consequentemente afeta a eficiência global do sistema. Adicionalmente, até os dias de hoje não há consenso sobre as condições operacionais em que o ganho com o incremento do coeficiente de transferência de calor é superior à perda devido ao aumento da perda de pressão. Neste estudo, inicialmente foi realizada uma extensa revisão da literatura sobre a ebulição convectiva no interior de tubos com e sem fitas retorcidas. Esta revisão aborda aspectos relacionados à perda de pressão e ao coeficiente de transferência de calor, juntamente com os métodos de previsão destes parâmetros. Foram realizados experimentos para determinação experimental de perda de pressão e coeficiente de transferência de calor, em aparato experimental contando com tubos horizontais com diâmetros internos iguais a 12,7 e 15,9 mm, para escoamento bifásico de R134a, razões de retorcimento iguais a 3, 4, 9, 14 e tubo sem fita, velocidades mássicas entre 75 e 200 kg/m²s, temperaturas de saturação iguais a 5 e 15°C, e fluxo de calor iguais a 5 e 10 kW/m². Os resultados experimentais foram analisados e comparados com estimativas segundo métodos disponíveis na literatura. Uma análise do aumento do coeficiente de transferência de calor e da perda de pressão friccional é apresentada. Foram verificados incrementos do coeficiente de transferência de calor de até 45% para a mesma potência de bombeamento, e aumento de perda de pressão de aproximadamente 35% para tubos com fitas retorcidas em relação aos tubos sem fita. Adicionalmente, através da comparação dos resultados experimentais com os métodos de previsão para coeficiente de transferência de calor, foi verificado que nenhuma metodologia apresentava previsões satisfatórias dos resultados. Portanto um novo método para previsão do coeficiente de transferência de calor durante ebulição convectiva no interior de tubos com fitas retorcidas foi desenvolvido com base nos resultados experimentais obtidos durante o presente estudo. O método proposto é função de parâmetros geométricos e do escoamento, e também de parâmetros físicos do escoamento rotacional induzido pela fita. A metodologia desenvolvida apresenta previsões satisfatórias dos resultados experimentais, prevendo 89,1% dos resultados experimentais com erro inferior a ± 30% e erro médio absoluto igual a 15,7%.
9

Theoretical and experimental study on convective boiling inside tubes containing twisted-tape inserts / Estudo teórico e experimental sobre a ebulição convectiva no interior de tubos com fitas retorcidas

Taye Stephen Mogaji 25 March 2014 (has links)
This research comprises an experimental and theoretical study on convective boiling inside tubes containing twisted-tape inserts. The demand for more compact and efficient thermal systems, in which the heat exchangers plays an important role, has led to the development and use of various heat transfer enhancement techniques. Among them twisted-tape insert as a swirl flow device is one of the most used. Twisted-tape inserts have been used for over more than one century ago as a technique of heat transfer enhancement applied to heat exchangers. However, the heat transfer augmentation comes together with pressure drop increment, impacting the pumping power and, consequently, the system efficiency. Moreover, until now it is not clear, the operational conditions under which the heat transfer coefficient augmentation by the use of twisted-tape inserts overcomes pressure drop penalty. In the present study, initially, extensive investigations of the literature concerning convective boiling inside plain tubes with and without twisted-tape inserts were performed. This literature review covers pressure drop, heat transfer coefficient and the leading frictional pressure drop gradient and heat transfer coefficient predictive methods during convective boiling inside tubes with and without twisted-tape inserts. Then, pressure drop and heat transfer coefficient results acquired in the present study were obtained in an experimental apparatus of 12.7 and 15.9 mm ID tubes during flow boiling of R134a for twisted-tape ratios of 3, 4, 9, 14 and tubes without inserts, mass velocities ranging from 75 to 200 kg/m2 s, saturation temperatures of 5 and 15°C and heat fluxes of 5 and 10 kW/m2. The experimental results were parametrically analyzed and compared against the predictive methods from literature. An analysis of the enhancement of the heat transfer coefficient and the pressure drop penalty is presented. Heat transfer coefficient increments up to 45% keeping the same pumping power and pressure drop penalty of about 35% were obtained by using twisted-tape relative to tubes without inserts. Additionally, through comparison of the present study experimental results with the predictive methods from the literature for heat transfer coefficient during two-phase flow inside tube containing twisted-tape inserts, it was verified that non of these methods predict satisfactory well the experimental results. However, a new method was develop for predicting the heat transfer coefficient during flow boiling inside tubes containing twisted-tape inserts based on the experimental results obtained in the present study. The predictive method takes into account the physical picture of the swirl flow phenomenon by including swirl flow effects promoted by the twisted-tape inserts. The proposed method predicts satisfactorily well the data obtained in the present study, predicting 89.1% of the experimental data within an error band of ± 30% and absolute mean deviation of 15.7%. / A presente pesquisa trata-se de um estudo teórico e experimental sobre a ebulição convectiva no interior de tubos com fitas retorcidas. A crescente demanda por sistemas térmicos mais compactos e eficientes, nos quais os trocadores de calor apresentam elevada relevância, tem motivado o desenvolvimento de inúmeras técnicas de intensificação de troca de calor, sendo que a utilização de fitas retorcidas é uma das técnicas mais adotadas. Fitas retorcidas são utilizadas como técnicas de intensificação de troca de calor há mais de um século. Entretanto o incremento da transferência de calor é acompanhado do aumento da perda de pressão, que por sua vez implica em aumento da potência de bombeamento, e consequentemente afeta a eficiência global do sistema. Adicionalmente, até os dias de hoje não há consenso sobre as condições operacionais em que o ganho com o incremento do coeficiente de transferência de calor é superior à perda devido ao aumento da perda de pressão. Neste estudo, inicialmente foi realizada uma extensa revisão da literatura sobre a ebulição convectiva no interior de tubos com e sem fitas retorcidas. Esta revisão aborda aspectos relacionados à perda de pressão e ao coeficiente de transferência de calor, juntamente com os métodos de previsão destes parâmetros. Foram realizados experimentos para determinação experimental de perda de pressão e coeficiente de transferência de calor, em aparato experimental contando com tubos horizontais com diâmetros internos iguais a 12,7 e 15,9 mm, para escoamento bifásico de R134a, razões de retorcimento iguais a 3, 4, 9, 14 e tubo sem fita, velocidades mássicas entre 75 e 200 kg/m²s, temperaturas de saturação iguais a 5 e 15°C, e fluxo de calor iguais a 5 e 10 kW/m². Os resultados experimentais foram analisados e comparados com estimativas segundo métodos disponíveis na literatura. Uma análise do aumento do coeficiente de transferência de calor e da perda de pressão friccional é apresentada. Foram verificados incrementos do coeficiente de transferência de calor de até 45% para a mesma potência de bombeamento, e aumento de perda de pressão de aproximadamente 35% para tubos com fitas retorcidas em relação aos tubos sem fita. Adicionalmente, através da comparação dos resultados experimentais com os métodos de previsão para coeficiente de transferência de calor, foi verificado que nenhuma metodologia apresentava previsões satisfatórias dos resultados. Portanto um novo método para previsão do coeficiente de transferência de calor durante ebulição convectiva no interior de tubos com fitas retorcidas foi desenvolvido com base nos resultados experimentais obtidos durante o presente estudo. O método proposto é função de parâmetros geométricos e do escoamento, e também de parâmetros físicos do escoamento rotacional induzido pela fita. A metodologia desenvolvida apresenta previsões satisfatórias dos resultados experimentais, prevendo 89,1% dos resultados experimentais com erro inferior a ± 30% e erro médio absoluto igual a 15,7%.
10

Mécanique des fluides appliquée à la conception des matériels pour la lutte contre l'incendie / Fluid mechanics applied to the design of fire-fighting equipments

Steen, Michael 07 February 2018 (has links)
Nous avons abordé dans ce travail deux aspects particuliers de la mécanique des fluides appliquées à la conception des matériels de lutte contre l’incendie. Le premier concerne la ventilation lors du traitement des compartiments. Nous avons montré qu’une grille alvéolaire, placée devant l’hélice du ventilateur, nous permet de façonner le jet et de lui donner une forme ovalisée. Cette forme est plus adéquate à l’entrant du compartiment et permet un gain important de la performance de ces ventilateurs. Le deuxième aspect de ce travail a été de concevoir un système de dosage d’émulseur dans un réseau d’eau sous pression. Nous avons pour cela défini un doseur de type venturi, équipé d’une ogive conique au niveau du col. Cette ogive, dont la position est définie par le rapport entre la pression d’entrée et la pression de sortie. Nous avons montré, à partir du théorème de Bernoulli, que ce système permet de maintenir une aspiration au niveau du col, quelle que soit la pression ou le débit le traversant. / In this work we have analysed two topics of fluid mechanics, applied to the design of fire fighting equipment. The first one is the performance of ventilation during the movement of air in a compartment that contains a fire. We have shown that specific blade angle designed within the gril and placed in front of the fan propeller, allows us to manipulate the jet of air giving it an oval shape. This shape is more efficient and allows a significant gain in the air movement performance within the compartment for these fans. The second aspect of this work was to define an emulsifier dosing system in a pressurized water system. We define a venturi dosing system with a movable cone piece. The position of this conical piece is Controlled by the pressure ratio between the inlet and the outlet. Based on Bernoulli's theorem, we have demontrated that this system maintains a level of suction at the Inlet regardless of the pressure or flow passing through it.

Page generated in 0.443 seconds