• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatic Hardening against Dependability and Security Software Bugs / Automatisches Härten gegen Zuverlässigkeits- und Sicherheitssoftwarefehler

Süßkraut, Martin 15 June 2010 (has links) (PDF)
It is a fact that software has bugs. These bugs can lead to failures. Especially dependability and security failures are a great threat to software users. This thesis introduces four novel approaches that can be used to automatically harden software at the user's site. Automatic hardening removes bugs from already deployed software. All four approaches are automated, i.e., they require little support from the end-user. However, some support from the software developer is needed for two of these approaches. The presented approaches can be grouped into error toleration and bug removal. The two error toleration approaches are focused primarily on fast detection of security errors. When an error is detected it can be tolerated with well-known existing approaches. The other two approaches are bug removal approaches. They remove dependability bugs from already deployed software. We tested all approaches with existing benchmarks and applications, like the Apache web-server.
2

Automatic Hardening against Dependability and Security Software Bugs

Süßkraut, Martin 21 May 2010 (has links)
It is a fact that software has bugs. These bugs can lead to failures. Especially dependability and security failures are a great threat to software users. This thesis introduces four novel approaches that can be used to automatically harden software at the user's site. Automatic hardening removes bugs from already deployed software. All four approaches are automated, i.e., they require little support from the end-user. However, some support from the software developer is needed for two of these approaches. The presented approaches can be grouped into error toleration and bug removal. The two error toleration approaches are focused primarily on fast detection of security errors. When an error is detected it can be tolerated with well-known existing approaches. The other two approaches are bug removal approaches. They remove dependability bugs from already deployed software. We tested all approaches with existing benchmarks and applications, like the Apache web-server.:1 Introduction 1 1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Automatic Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Enforcing Dynamic Personalized System Call Models 9 2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 SwitchBlade Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 System Call Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Model Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.1 Problem: False Positives . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.2 Data- ow-Based Learner . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Taint Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.1 TaintCheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.2 Escaping Valgrind . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.3 Replay of Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Model Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.1 Loading the System Call Model . . . . . . . . . . . . . . . . . . . . 31 2.6.2 Checking System Calls . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7.1 Synthetic Exploits . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7.2 Apache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7.3 Exploits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.7.4 Micro Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.7.5 Model Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7.6 Stateful Application . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Speculation for Parallelizing Runtime Checks 43 3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.1 Compiler Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.2 Runtime Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Deterministic Replay and Speculation . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4 Switching Code Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 Integration with parexc chkpnt . . . . . . . . . . . . . . . . . . 58 3.4.3 Code Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.4 Stack-local Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5 Speculative Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.2 Deadlock Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5.3 Storage Back-ends . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.6 Parallelized Checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.6.1 Out-of-Bounds Checks . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6.2 Data Flow Integrity Checks . . . . . . . . . . . . . . . . . . . . . . 71 3.6.3 FastAssert Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.6.4 Runtime Checking in STM-Based Applications . . . . . . . . . . . . 72 3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.7.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.7.2 Checking Already Parallelized Applications . . . . . . . . . . . . . . 77 3.7.3 ParExC Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4 Automatically Finding and Patching Bad Error Handling 83 4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3 Learning Library-Level Error Return Values from System Call Error Injection 89 4.3.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3.2 E cient Error Injection . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3.3 Obtain OS Error Specification . . . . . . . . . . . . . . . . . . . . . 92 4.4 Finding Bad Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 Argument Recording . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.2 Systematic Error Injection . . . . . . . . . . . . . . . . . . . . . . . 94 4.4.3 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.5 Fast Error Injection using Virtual Machines . . . . . . . . . . . . . . . . . 99 4.5.1 The fork Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.5.2 Virtual Machines for Fault Injection . . . . . . . . . . . . . . . . . . 101 4.6 Patching Bad Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.6.1 Error Value Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.6.2 Preallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.6.3 Patch Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.7.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5 Robustness and Security Hardening of COTS Software Libraries 117 5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.3 Test Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.3.1 Ballista Type System . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.3.2 Meta Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3.3 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.3.4 Type Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.3.5 Type Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.3.6 Reducing the Number of Test Cases . . . . . . . . . . . . . . . . . . 128 5.3.7 Other Sources of Test Values . . . . . . . . . . . . . . . . . . . . . . 130 5.4 Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.4.1 Check Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.4.2 Parameterized Check Templates . . . . . . . . . . . . . . . . . . . . 133 5.5 Protection Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.5.1 Minimizing the Truth Table . . . . . . . . . . . . . . . . . . . . . . 134 5.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.6.1 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.6.2 Autocannon as Dependability Benchmark . . . . . . . . . . . . . . 138 5.6.3 Protection Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6 Conclusion 143 6.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 References 147 List of Figures 159 List of Tables 163 Listings 165
3

Obemannade system, ett hot mot marinen?

Rönnqvist, Kim January 2023 (has links)
I en komplex miljö som skärgårdar väntar en del utmaningar. Detta tillsammans med den teknik som finns idag inom UAV området skapar nya hotbilder. Ett av fartygen som den svenska flottan använder är Visbykorvetten, som är ett komplext system med kompetent förmåga som ska kunna lösa många uppgifter. Rapporten avser att analysera vilket hot som drönare kan utgöra mot Visbykorvetten.   Några UAV som används i kriget i Ukraina är Switchblade 300, 600 och Shahed-136. Arbetet syftar till att undersöka dessa UAV och vilket hot de kan utgöra mot en Visbykorvett, i syfte för att se om korvettens skydd är tillräckligt.  Fartyget har ett bra egenskydd mot ankommande hot från luften, dock på grund av vapensystemens placering på fartyget uppstår en begränsning i möjligheterna att erhålla ett eget skydd runt hela fartyget. Detta kan även försvåras av den komplexa miljö som skärgården medför. Begränsningen i egenskyddet bedöms en UAV kunna nyttja och på så sätt få möjligheten att skada fartygets sensorer som sitter relativt oskyddade. Vilket medför att fartyget inte fullt ut kan lösa tilldelade uppgifter utan är behov av att repareras. För att undvika detta kan fyra olika åtgärder vidtas. Undvika trånga sund om det är möjligt, fråga externa marina förband om eskortmöjligheter, eller installera vapenstation på akterdäck för att öka egenskyddet, och ge fartyget signalstörningsförmåga. / The complex environments that the archipelago provides, alongside the technical developments of drones, create a new form of threat. The Visby class corvette is a complex platform that can fulfil many different tasks both above and below the surface. This thesis will look closer at its surface-to-air defense system, and capability to defend against drones. Some of the drones that are used in the Russo-Ukrainian war, are Switchblade 300, 600 and Shahed-136. The thesis aims to investigate these drones and what threat they may pose against a Visby Corvette, to see if the ship’s protection is sufficient.  The ship has good self-protection against incoming threats from the air, but due to the location of the weapon systems on the ship, there is a limitation in obtaining full protection. The protection can also be hampered by the complex environment that the archipelago entails. A drone can exploit this limitation of self-protection and obtain the possibility of damaging the sensors of the ship that are relatively unprotected. This means that the ship cannot fully solve the assigned tasks due to its need for repairs.  In conclusion, to prevent this, four different actions can be taken. Avoid narrow straits, if possible. Ask external units for escort. Install a weapon station in the stern to increase self-protection and provide the vessel with signal interference technology.

Page generated in 0.0407 seconds