• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of Layer-by-Layer Films in Electrochromic Devices and Bending Actuators

Jain, Vaibhav 25 September 2009 (has links)
This thesis presents work done to improve the switching speed and contrast performance of electrochromic devices. Layer-by-Layer (LbL) assembly was used to deposit thin electrochromic films of materials ranging from organic, inorganic, conducting polymers, etc. The focus was on developing new materials with high contrast and long lifecycles. A detailed switching-speed study of solid-state EC devices of already-developed (PEDOT (Poly(3,4-ethylenedioxythiophene)), polyviologen, inorganic) materials and some new materials (Prodot-Sultone) was performed. Work was done to achieve the optimum thickness and number of bilayers in LbL films resulting in high-contrast and fast switching. Device sizes were varied for comparison of the performance of the lab-made prototype device with the commercially available "small pixel" size displays. Symmetrical EC devices were fabricated and tested whenever conducting polymers are used as an EC material. This symmetrical configuration utilizes conducting polymers as an electroactive layer on each of two ITO-coated substrates; potential is applied to the two layers of similar conducting polymers and the device changes color from one redox state to another. This method, along with LbL film assembly, are the main factors in the improvement of switching speed results over already-published work in the literature. PEDOT results show that EC devices fabricated by LbL assembly with a switching speed of less than 30 ms make EC flat-panel displays possible by adjusting film thickness, device size, and type of material. The high contrast value (84%) for RuP suggests that its LbL films can be used for low-power consumption displays where contrast, not fastest switching, is the prime importance. In addition to the electrochromic work, this thesis also includes a section on the application of LbL assembly in fabricating electromechanical bending actuators. For bending actuators based on ionic polymer metal composites (IPMCs), a new class of conductive composite network (CNC) electrode was investigated, based on LbL self-assembled multilayers of conductive gold (Au) nanoparticles. The CNC of an electromechanical actuator fabricated with 100 bilayers of polyallylamine hydrochloride (PAH)/Au NPs exhibits high strain value of 6.8% with an actuation speed of 0.18 seconds for a 26 µm thick IPMC with 0.4 µm thick LbL CNCs under 4 volts. / Ph. D.
2

Characterization and Modeling of High-Switching-Speed Behavior of SiC Active Devices

Chen, Zheng 28 January 2010 (has links)
To support the study of potential utilization of the emerging silicon carbide (SiC) devices, two SiC active switches, namely 1.2 kV, 5 A SiC JFET manufactured by SiCED, and 1.2 kV, 20 A SiC MOSFET by CREE, have been investigated systematically in this thesis. The static and switching characteristics of the two switches have firstly been characterized to get the basic device information. Specific issues in the respective characterization process have been explored and discussed. Many of the characterization procedures presented are generic, so that they can be applied to the study of any future SiC unipolar active switches. Based on the characterization data, different modeling procedures have also been introduced for the two SiC devices. Considerations and measures about model improvement have been investigated and discussed, such as predicting the MOSFET transfer characteristics under high drain-source bias from switching waveforms. Both models have been verified by comparing simulation waveforms with the experimental results. imitations of each model have been explained as well. In order to capture the parasitic ringing in the very fast switching transients, a modeling methodology has also been proposed considering the circuit parasitics, with which a device-package combined simulation can be conducted to reproduce the detailed switching waveforms during the commutation process. This simulation, however, is inadequate to provide deep insights into the physics behind the ringing. Therefore a parametric study has also been conducted about the influence of parasitic impedances on the device's high-speed switching behavior. The main contributors to the parasitic oscillations have been identified to be the switching loop inductance and the device output junction capacitances. The effects of different parasitic components on the device stresses, switching energies, as well as electromagnetic interference (EMI) have all been thoroughly analyzed, whose results exhibit that the parasitic ringing fundamentally does not increase the switching loss but worsens the device stresses and EMI radiation. Based on the parametric study results, this thesis finally compares the difference of SiC JFET and MOSFET in their respective switching behavior, comes up with the concept of device switching speed limit under circuit parasitics, and establishes a general design guideline for high-speed switching circuits on device selection and layout optimization. / Master of Science
3

III-V Tunneling Based Quantum Devices for High Frequency Applications

Growden, Tyler A. 29 December 2016 (has links)
No description available.

Page generated in 0.0915 seconds