• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 6
  • 4
  • 1
  • Tagged with
  • 37
  • 23
  • 19
  • 18
  • 13
  • 12
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Steps toward the creation of a carbon nanotube single electron transistor

Ferguson, R. Matthew 07 May 2003 (has links)
This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands created by this method are approximately 400 μm2 in area.
22

CHARACTERIZATION OF THE MECHANICAL PROPERTIES OF CARBON NANOTUBE-BASED COMPOSITES USING THE FINITE ELEMENT METHOD

GADE, SRINIVAS January 2005 (has links)
No description available.
23

Spectroscopic Studies of Doping and Charge Transfer in Single Walled Carbon Nanotubes and Lead Sulfide Quantum Dots

Haugen, Neale O. January 2015 (has links)
No description available.
24

Vers une électronique de spin cohérente de phase à base de nanotubes de carbone

Feuillet-Palma, Chéryl 28 May 2010 (has links) (PDF)
Cette thèse se place dans le cadre de la physique mésoscopique et a pour objet l'étude du transport électronique polarisé en spin dans les nanotubes de carbone mono-parois. L'existence d'un déséquilibre entre les populations d'électrons de spin up et ceux de spin down lors de leur diffusion à l'interface entre un métal ferromagnétique et un métal non- magnétique est au coeur du principe de fonctionnement des jonctions tunnel magnétiques et des multi-couches bien connues dans le domaine de l'électronique de spin. Bien que le degré de liberté de spin et l'effet tunnel des électrons soient utilisés dans ces dispositifs, aucun d'entre eux ne tient compte du degré de liberté de phase orbitale de la fonction d'onde électronique. Dans la plupart des dispositifs étudiés jusqu'à présent, cet aspect n'a pas été développé en raison du régime de transport semi-classique des porteurs de charge dans les conducteurs considérés. Dans ce travail, nous étudions des mesures de transport dépendantes du spin dans des circuits à plusieurs réservoirs à base de nanotubes de carbone. Nous observons la présence d'un signal de spin dans la tension non-locale et d'un signal de spin anormale dans la conductance. Ces signaux de spin sont contrôlables par le tension de grille appliquée et ils révèlent qu'à la fois le degré de liberté de phase orbitale et le degré de spin sont conservés dans un nanotube de carbone connecté à plusieurs réservoirs ferromagnétiques. Nous montrons également l'existence d'un phénomène étonnant qui n'a aucun analogue classique et qui est la conséquence de la cohérence de phase orbitale : la présence d'un comportement de type transistor de spin à effet de champ entre les deux contacts normaux avec à proximité deux contacts férromagnétiques en dehors du chemin classique des électrons. Ceci est la réalisation de l'expérience de tête de théoricien pour l'électronique de spin. Nos observations ouvrent la voix pour des dispositifs de l'électronique de spin exploitant ces deux degré de liberté quantique sur le même plan.
25

Steps Toward the Creation of a Carbon Nanotube Single Electron Transistor

Ferguson, R. Matthew 07 May 2003 (has links)
This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands created by this method are approximately 400 μm2 in area.
26

Steps Toward the Creation of a Carbon Nanotube Single Electron Transistor

Ferguson, R. Matthew 07 May 2003 (has links)
This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands created by this method are approximately 400 μm2 in area.
27

Adhesion and dissipation at nanoscale

Li, Tianjun 10 October 2013 (has links) (PDF)
In this thesis, we test some interactions involving surfaces processes at the nanometer scale. The experiments are conducted with a highly sensitive interferometric Atomic Force Microscope (AFM), achieving a resolution down to E-28m2/Hz for the measurement of deflection. Combined with original thermal noise analysis, this tool allows quantitative characterization of the mechanical response of micrometer and nanometer sized systems, such as microcantilevers or carbon nanotubes, on a large frequency range.The first part of my work deals with the viscoelasticity of the coating of AFM cantilevers. Evidenced by a 1/f thermal noise at low frequency, this phenomenon is present when a cantilever is coated with a metallic layer (gold, aluminium, platinium, etc...). Using the fluctuation dissipation theorem and Kramers Kronig relations, we extract the frequency dependance of this viscoelastic damping on a wide range of frequency (1Hz to 20kHz). We find a generic power law dependence in frequency for this dissipation process, with a small negative coefficient that depends on materials. The amplitude of this phenomenon is shown to be linear in the coating thickness, demonstrating that the damping mechanism takes its roots in the bulk of the metallic layer.The second part of my work tackles new experiments on the interaction of carbon nanotubes with flat surfaces. Using our AFM, we perform a true mechanical response measurement of the rigidity and dissipation of the contact between the nanotube and the surface, in a peeling configuration (the nanotube is partially absorbed to the substrate). The results of this protocol are in line with the dynamic stiffness deduced from the thermal noise analysis, showing an unexpected power law dependence in frequency for the contact stiffness. We suggest some possible physical origins to explain this behavior, such as an amorphous carbon layer around the nanotube.
28

Polymer Assisted Dispersion of Carbon Nanotubes (CNTs) and Structure, Electronic Properties of CNT - Polymer Composite

Pramanik, Debabrata January 2017 (has links) (PDF)
Carbon nanotubes possess various unique and interesting properties. They have very high thermal and electrical conductivities, high stiffness, mechanical strength, and optical properties. Due to these properties, CNTs are widely used materials in a variety of fields. It is used for biotechnological and biomedical applications, as chemical and biosensor, in energy storage and field emission transistor. Experimentally synthesized CNTs are generally found in bundle form due to the strong vander Waals (vdW) at-traction between the individual tubes. To use CNTs in real life applications, we often require specific nanotubes with particular characteristics. The nanotube bundle is a mixture of various chirality, diameters and electronic properties (metallic and semiconducting). Only thermal energy is not sufficient to disperse nanotubes from the bundle geometry overcoming the strong vdW attraction between nanotubes. The hydrophobic and insoluble nature of CNTs in the aqueous medium makes the dispersion of CNTs even more difficult. So, it is a big challenge to get single pristine nanotube from the bundle geometry. Many experimental and theoretical studies have addressed the problem of nanotube dispersion from the bundle geometry. Ultrasonic dispersing method is a widely used technique for this purpose where ultrasonic sound is applied to agitate particles in a system. Other methods include using different organic and inorganic solutions, various surfactant molecules, different polymers as dispersing agents. In this study we extend our e orts to develop some better methods and improved dispersing agents. In this thesis, we address the problem of CNT dispersion. To address this issue, we rst give a quantitative estimation of the effective interaction between nanotubes. Next, we introduce different polymers (ssDNA and dendrimers) as external agents and show that they help to overcome the strong adhesive interaction between CNTs and make nanotube dispersion possible from the bundle geometry. For all of the works presented in this thesis, we have used fully atomistic MD simulation and DFT level calculations. We study ssDNA-CNT complex using all-atom MD simulation and calculate various structural quantities to show the stability of ssDNA-CNT complex in aqueous medium. The adsorption of ssDNA bases on CNT surface is driven by - interaction between nucleic bases and CNT. Using the potential of mean forces (PMF) calculation, we study the binding strength of the polynucleotide ssDNA for poly A, T, G, and C with CNT of chirality (6,5). From the PMF calculation, we show the binding sequence to be A > T > C > G. Except for poly G, our result is in good agreement with earlier reported single molecule force spectroscopy results where the sequence of binding interaction was reported to be A > G > T > C. To explore how the interaction between two CNTs mod-i ed in presence of ssDNA between them, we perform PMF calculation between the two ssDNA-wrapped CNTs. The PMF shows the sequence of interaction strength between two ssDNA-wrapped CNTs for different nucleic bases to be T > A > C > G. Thus, from PMF calculations we show the poly T to have the highest dispersion efficiency, which is consistent with earlier reported experimental study. Our PMF calculation shows that poly C and poly G reduce the attraction between two CNTs drastically, whereas poly A and poly T make the interaction fully repulsive in nature. We also present microscopic pictures of the various binding conformations for ssDNA adsorbed on CNT surface. We also study the dendrimer-CNT complex for both the PAMAM and PETIM dendrimers of different generations at various protonation states and present microscopic pictures of the complex. We calculate PMF between two dendrimer wrapped CNTs and show that protonated and higher generations (G3, G4, and so forth) non-protonated PAMAM dendrimers can be used as e ective agents to disperse CNTs from bundle geometry. We also study the chirality dependence of PMF respectively. Finally, we study the interaction of mannose dendrimer with CNTs and show that the wrapping of mannose dendrimer can drive a metal to semiconducting transition in a metallic CNT. We attribute the carbon-carbon bond length assymetry in CNT due to the wrapping of mannose dendrimer as the reason for this band gap opening which leads to metal-semiconductor transition in CNT. Thus, the wrapping of mannose dendrimer on CNT can change its electronic properties and can be used in the band gap engineering of CNT in future nanotechnology. Thus, the works carried out here in this dissertation will help to address the problem of nanotube dispersion from the bundle geometry which will in turn help to use CNT for various applications in diverse fields.
29

Biocompatibility of Carbon Nanomaterials: Materials Characterization and Cytotoxicity Evaluation

Zhu, Lin 21 August 2012 (has links)
No description available.
30

Study of Mechanical Properties of Carbon Nanotubes and Nanocomposites by Molecular Simulations

Mokashi, Vineet V. 26 May 2005 (has links)
No description available.

Page generated in 0.0437 seconds