• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • 1
  • Tagged with
  • 14
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synapsin II Reductions and Schizophrenia: The Effects of Antisense Knockdown and Other Confounds on Disease Manifestation / Efficacy of Synapsin II Antisense Sequences

Hui, Patricia 05 November 2015 (has links)
The complex heterogeneity of schizophrenia has proved difficult to replicate in preclinical animal models. Of the many molecular targets implicated with schizophrenia, this thesis focuses on synapsin II - a pre-synaptic protein critical for neurotransmission and synaptogenesis; and parvalbumin - a calcium-binding protein found in interneurons of the dorsolateral prefrontal cortex (DLPFC) and the striatum (STR). Patients with schizophrenia display reduced levels of synapsin II mRNA in the DLPFC, while decreased activation of parvalbumin neurons in the same region has resulted in schizophrenia-like cognitive deficits. Knockdown of synapsin II in the medial prefrontal cortex (mPFC) of neonate and adult rats has previously induced schizophrenia-like alterations. However, there are concerns that must be addressed before novel animal models of schizophrenia can be developed using reductions in synapsin II. This thesis was designed to 1) eliminate maternal separation (MS) between post-natal days (PD) 14-23, which correlates with a neurodevelopmental synapsin II model, as a means of inducing schizophrenia-like behaviours; 2) reassess the use of fully and partially phosphorothioated first-generation antisense oligonucleotides to reduce synapsin II levels, and 3) evaluate parvalbumin expression in the STR following synapsin II knockdown. Results from this study indicate 1) a 36 hour MS regimen during PD 14-23 did not cause behavioural changes bearing resemblance to schizophrenia; 2) oligonucleotide sequences stabilized completely with phosphorothioate bonds were insufficient in reducing synapsin II levels and caused localized necrosis, while partially modified sequences induced a slight knockdown effect without cell death; and 3) levels of striatal parvalbumin expression were decreased in rats receiving the partially, but not fully, modified antisense sequences. The findings strengthen the face validity and safety profile of the synapsin II knockdown model. Novel evidence has also been provided for the role of parvalbumin in the striatum and suggests its influence on cognitive dysfunction in schizophrenia. / Thesis / Master of Science (MSc)
2

Charakterisierung der Serin-/Threonin-Proteinkinase SRPK3 in Drosophila melanogaster und Phosphorylierungsstudien an Synapsin / Characterization of the serine-/threonine protein kinase SRPK3 in Drosophila melanogaster and phosphorylation studies on synapsin

Nieratschker, Vanessa January 2008 (has links) (PDF)
In einer vorangegangenen Arbeit konnte eine hypomorphe Mutation innerhalb des Genlokus einer putativen Serin-/Threonin-Kinase als Auslöser der Aggregatbildung des Aktive-Zone- Proteins Bruchpilot in larvalen Motoneuronaxonen identifiziert werden (Nieratschker, 2004). Aufgrund der Homologien dieser Kinase zu SR-Proteinkinasen wurde der Name Serin- /Threonin-Proteinkinase 3 (SRPK3) vorgeschlagen. Laut ursprünglicher Annotation der „Flybase“ (http://flybase.bio.indiana.edu) codiert der Genlokus der Srpk3, der auf dem linken Arm des dritten Chromosoms innerhalb der Region 79D4 lokalisiert ist und sich über ca. 10,3 kb erstreckt, für zwei Transkripte (Srpk3-RC und Srpk3-RB). Diese beiden Transkripte haben unterschiedliche Transkriptions- und Translationsstartpunkte und unterscheiden sich in ihrem ersten kodierenden Exon, ab dem vierten Exon sind sie allerdings identisch. Das Srpk3-RCTranskript umfasst ca. 4,2 kb, das Srpk3-RB-Transkript ca. 3,8 kb. Die von diesen Transkripten kodierten Proteine bestehen aus 816 (Srpk3-RC) bzw. 749 (Srpk3-RB) Aminosäuren. Diese beiden ursprünglich annotierten Transkripte konnten durch RT-PCR-Experimente bestätigt werden. Dabei wurde auch ein zusätzliches, alternativ gespleißtes Exon von 159 bp entdeckt, das beiden Transkripten zugeordnet werden kann. Somit codiert der Srpk3-Genlokus für mindestens vier Transkripte, die Transkripte der RC/RF-Transkriptgruppe mit (Srpk3-RF) und ohne (Srpk3-RC) das alternativ gespleißte Exon und die Transkripte der RB/RETranskriptgruppe mit (Srpk3-RE) und ohne (Srpk3-RB) das alternativ gespleißte Exon. Die Existenz eines weiteren Transkriptes Srpk3-RD, die in der aktuellen Version der „Flybase“ annotiert ist, konnte durch RT-PCR-Experimente nicht nachgewiesen werden. Zu Beginn dieser Arbeit lag eine hypomorphe Mutante für die SRPK3 schon vor (Srpk3P1; Eberle, 1995). Diese Linie trägt eine P-Elementinsertion innerhalb des ersten Exons der RC/RF-Transkriptgruppe, die das Leseraster dieser Transkriptgruppe zerstört, so dass in dieser Linie nur die RB/RE-Transkriptgruppe gebildet werden kann. Wie bereits erwähnt, konnte diese Mutation in vorangegangenen Arbeiten bereits als der Auslöser der Aggregatbildung des Bruchpilot-Proteins in larvalen Motoneuronaxone, sowie einiger Verhaltensdefekte identifiziert werden (Nieratschker, 2004; Bock 2006). Diese Verhaltensdefekte ähneln stark denen, die durch einen knock-down der Bruchpilot-Expression mittels RNAi ausgelöst werden (Wagh et al., 2006; Bock, 2006), was auf eine Interaktion beider Proteine schließen lässt. Um nun den Beweis führen zu können, dass tatsächlich diese Mutation die beobachteten Phänotypen verursacht, wurden Rettungsversuche durchgeführt. Die Srpk3-RF-cDNA war dabei in der Lage die durch die hypomorphe Mutation der SRPK3 verursachten Phänotypen vollständig, oder zumindest teilweise zu retten (vgl. auch Bock, 2006; Bloch, 2007). Damit konnte belegt werden, dass die hypomorphe Mutation der SRPK3 tatsächlich die in der Mutante Srpk3P1 beobachteten Phänotypen verursacht. Um die durch in situ Hybridisierung erhaltenen Daten zur Lokalisation der SRPK3 im larvalen Gehirn (Nieratschker, 2004) bestätigen, sowie weitere Daten erhalten zu können, wurden Isoform-spezifische Antisera gegen die SRPK3 generiert. Diese Antiseren sind in der Lage überexprimiertes Protein zu detektieren (Bloch, 2007), allerdings ist es mit diesen Antiseren nicht möglich die SRPK3 in wildtypischen Präparaten nachzuweisen. Weitere Daten zur Lokalisation der SRPK3, die durch die Verwendung eines SRPK3-eGFPFusionsproteins erhalten wurden, zeigten, dass eine der ektopisch überexprimierten SRPK3- Isoformen mit Bruchpilot an der Aktiven Zone kolokalisiert. Dieses Ergebnis, in Verbindung mit den durch die Mutation der SRPK3 verursachten Bruchpilot-Aggregaten in larvalen Motoneuronaxonen und den Verhaltensdefekten, gibt Hinweise auf eine mögliche direkte Interaktion beider Proteine…. / In a previous study, a hypomorphic mutation in the gene locus of a putative serine-/threonine kinase was found to cause aggregates of the active zone protein Bruchpilot in larval motoneuron axons (Nieratschker, 2004). Because of its high homology to SR-protein kinases this gene was named serine-/threonine protein kinase 3 (Srpk3). The 10,3 kb large Srpk3 gene locus is located on the left arm of the third chromosome in the chromosomal region 79D4. According to an earlier annotation in “flybase” (http://flybase.bio.indiana.edu) the Srpk3 gene codes for two transcripts of 4,2 (Srpk3-RC) and 3,8 kb (Srpk3-RB). These two transcripts use different transcription and translation start sites, but from the fourth exon on they are identical. The Srpk3-RC and Srpk3-RB transcripts code for proteins of 816 and 749 amino acids respectively. The existence of these two originally annotated transcripts could be verified by RT-PCR. In addition, an alternatively spliced exon of 159 bp was identified, which is part of both groups of transcripts (Srpk3-RF and Srpk3-RE). Therefore the Srpk3 gene locus codes for at least four transcripts. Srpk3-RB and Srpk3-RC do not contain the newly identified, alternatively spliced exon, whereas Srpk3-RF and Srpk3-RE do. The existence of another transcript (Srpk3- RD) annotated in the current version of “flybase” could not be confirmed by RT-PCR experiments. The hypomorphic BRPK mutant Srpk3P1, which has a P-element insertion in the first exon of the RC/RF group of transcripts that destroys the open reading frame of those isoforms, already existed (Eberle, 1995). Therefore in that line only the RB/RE isoforms are expressed. That hypomorphic mutation was found to cause Bruchpilot aggregates in larval motoneuron axons (Nieratschker, 2004) and in addition several behavioral deficits (Bock, 2006). The behavioral deficits are similar to those caused by a genetic knock-down of the Bruchpilot expression using RNAi (Wagh et al., 2006; Bock, 2006). This observation points towards an exclusive interaction of both proteins. To prove that in fact the mutation of the SRPK3 causes the observed phenotypes, rescue experiments were performed. We were able to revert the mutant phenotypes by expressing the Srpk3-RF cDNA in the nervous system (see also Bock, 2006; Bloch, 2007). Therefore mutation of the SRPK3 indeed causes the observed phenotypes in the hypomorphic BRPK mutant (Srpk3P1). To confirm the data obtained by in situ hybridization on larval brains (Nieratschker, 2004) and to gain more knowledge regarding the localization of the SRPK3, isoform specific antisera have been generated. These antisera recognize over-expressed protein (Bloch, 2007), but they are not able to recognize SRPK3 in wild type animals. Further data about localization of SRPK3 could be provided by using ectopically overexpressed GFP-tagged SRPK3 isoforms. SRPK3-GFP colocalizes with Bruchpilot at the presynaptic active zone. This result along with the Bruchpilot aggregates in larval motoneuron axons and the behavioral deficits of SRPK3 mutants provide further evidence for a possible interaction of both proteins. To investigate, if a complete loss of SRPK3 expression alters the phenotypes observed in the hypomorphic SRPK3 mutant, a SRPK3 null mutant was generated by jump-out mutagenesis. The phenotypic analyses performed with the hypomorphic line Srpk3P1were repeated with the SRPK3 null mutant. It became obvious that the phenotypes were not enhanced by complete loss of SRPK3 expression (also see Bloch, 2007). Regarding the Bruchpilot aggregates in larval motoneuron axons, no significant differences between hypomorphic mutant and null mutant were observed, however behavioral deficits seem to be more severe in the hypomorph (Bloch, 2007)…..
3

Role of Synapsin II in Neurodevelopment: Delineating the Role of Developmental Medial Prefrontal Cortical Synapsin II Reductions in the Pathophysiology of Schizophrenia

Tan, Mattea 11 1900 (has links)
Synapsins are primarily neuron-specific proteins critical for neurotransmission, synaptogenesis and synapse maintenance. Synapsin II has been specifically linked with increased susceptibility towards developing schizophrenia. Reduced synapsin II mRNA levels were found in the dorsolateral prefrontal cortex (PFC) of patients with schizophrenia. Moreover, synapsin II knockdown in the medial PFC (mPFC) of the adult rat was previously shown to cause schizophrenia-like behaviour and altered expression levels of vesicular proteins involved in glutamatergic and GABAergic signaling within the mPFC. The study of schizophrenia in recent years has shifted to focus on neurodevelopmental players which influence disease outcome. This study was designed to establish the link between neurodevelopmental dysregulation of synapsin II and schizophrenia. Specific knockdown of synapsin II was performed in the mPFC at postnatal day (PD) 7 and PD 17-23. Schizophrenia-like behavioural abnormalities were assessed at pre-pubertal (PD 32-35) and post-pubertal (PD 65-70) stages. Protein estimation of vesicular transporters involved in glutamate, GABA, and dopamine neurotransmitter systems were also assessed in the mPFC. Results from this study indicate (1) synapsin II knockdown during PD 17-23, but not PD 7, caused lasting schizophrenia-like abnormalities (2) abnormalities exhibited permanence at pre-pubertal and post-pubertal stages, and manifested as a function of brain development, (3) behavioural abnormalities were reminiscent of symptoms in established animal models of schizophrenia (i.e. deficits in prepulse inhibition, social withdrawal, locomotor hyperactivity), (4) neurodevelopmental synapsin II alterations induced hypoactive glutamatergic activity through decreased synapsin IIa expression levels (pre-pubertal) and decreased VGLUT-2 expression levels (post-pubertal), and (5) acute olanzapine treatment effectively attenuated schizophrenia-like abnormalities through normalized synapsin IIa expression levels (pre-pubertal) and increased GAD65/67 expression levels (post-pubertal). Results show the causal link between synapsin II expression during critical neurodevelopmental stages and schizophrenia. Additionally, evidence has been provided for the face, construct, and predictive validities of this newly developed animal model of schizophrenia. / Thesis / Doctor of Philosophy (PhD)
4

Investigating the Role of Synapsin II in Neurological Disorders Involving Dysregulated Dopaminergic Transmission

Guest, Kelly A. 08 1900 (has links)
Schizophrenia (SCZ) is a debilitating mental illness that affects roughly 1% of the world's population. Current theories about the etiology of this disease highlight disruptions in dopamine (DA) and glutamine. However, a more recent theory, the 'synaptic hypothesis' proposes that the fundamental pathology of this illness involves disruptions in synaptic transmission. The synapsins are a family of neuron specific phosphoproteins that play an important role in neurotransmitter release, synapse formation and maintaining a reserve pool of synaptic vesicles. Previous research has suggested that synapsin II has a role in the etiology of SCZ. For example, synapsin II mRNA is significantly reduced in the medial prefrontal cortex (MPFC) of patients, and synapsin II knockout mice display a variety of behavioural abnormalities which mimic human SCZ. Considering that SCZ may result from changes in the synapse, we wanted to further elucidate the role of synapsin II by measuring protein expression in post-mortem PFC samples. Overall, our results revealed that synapsin IIa and IIb are not significantly different between patients and controls, however, we hypothesize that synapsin II expression has been normalized in patients due to antipsychotic drug (APD) use. In fact, we discovered that treatment with atypical APDs significantly increases synapsin II in the prefrontal cortex (PFC) of patients, which may underlie the beneficial effects of these drugs. Another objective of our work was to investigate the expression of various presynaptic proteins in post-mortem samples from patients with Parkinson's disease (PD) Parkinson's disease, like SCZ, is an illness which involves dysregulated dopaminergic transmission and synaptic dysfunction. Therefore, we hypothesized that synapsin II might also be disrupted in patients with PD. Our results demonstrated that synapsin IIa and IIb are significantly reduced in the substantia nigra (SN), but not the striatum (STR) or PFC of patients, when compared to controls. Further, no changes were observed in the other synapsins (I or III), or synaptophysin, which suggests that synapsin II dysregulation may be specific to disorders which involve disruptions in dopamine (DA). / Thesis / Master of Science (MS)
5

INVESTIGATION OF NEUROPROTECTIVE TARGETS FOR PARKINSON’S DISEASE AND THEIR ROLE IN PATHOPHYSIOLOGY WITH A SECONDARY LOOK AT A MOLECULAR TARGET FOR SCHIZOPHRENIA / MOLECULAR TARGETS FOR CENTRAL NERVOUS SYSTEM DISORDERS

Bernardo, Ashley January 2019 (has links)
Disorders of the central nervous system (CNS) continuously pose problems for current therapeutics. In part, this is due to the uncertainty of underlying pathophysiological changes that give rise to specific disorders. Parkinson’s disease (PD) specifically is a neurodegenerative CNS disorder with unknown origins of dopaminergic degeneration in the substantia nigra. Current therapies are reactive in nature and no existing neuroprotective therapies are available. Two hypotheses have been proposed to contribute to dopaminergic degeneration in PD: endoplasmic reticulum (ER) stress and oxidative stress. This thesis investigates molecular targets involved in each of these responses (mesencephalic astrocyte-derived neurotrophic factor (MANF) and cyclin-dependent 5 (CDK5)/p25 respectively) to support a multi-hit hypothesis in PD neural degeneration. Using behavioural and biochemical analysis, a reduction in MANF was found to participate in the ER stress hypothesis and CDK5/p25 hyperactivation is a viable neuroprotective target related to the oxidative stress hypothesis. Both pathways are evidenced in PD pathology and this thesis proposes specific targets for both pathways in the development of necessary neuroprotective therapies. Subsequently, included in this thesis is a chapter about the unmet pharmacological alleviation of negative and cognitive symptom domains in another CNS disorder of unknown pathophysiology: schizophrenia (SZ). These untreated symptoms are thought to be caused by irregularities in the signalling of multiple neurotransmitter systems. This chapter investigates the role of synapsin II, a protein involved in regulating signalling of multiple neurotransmitters, in manifesting negative and cognitive SZ symptoms and analyzes brain glucose metabolism. Reduced synapsin II levels were consistently implicated in the underlying physiology, and therefore synapsin II is proposed as a potential pharmacological target for these unmedicated symptomologies. Overall this thesis uses interrelated studies to propose novel molecular targets to address unmet therapeutic needs based on evidence of their involvement in the pathophysiology of PD and SZ. / Thesis / Doctor of Philosophy (PhD) / Brain diseases like Parkinson’s disease (PD) and Schizophrenia (SZ) are difficult to treat because their cause has not been discovered. PD shows degeneration of cells in the brain but the cause for degeneration is unknown. This makes developing treatments to protect cells from dying difficult. Two pathways are suggested to cause cell death in PD. This thesis proposes that both pathways are responsible for degeneration through a combined effort. Here, both pathways are shown to lead to cell death resembling PD and specific molecules are suggested as targets for developing protective treatments. Like PD, SZ has symptoms that cannot be treated because the cause is unclear. A protein was investigated for producing SZ-like symptoms and found to have potential for treatment design. This thesis aims to understand molecular changes in the brain leading to PD, with a look at SZ and how they can be used for better treatment design.
6

Molecular mechanisms of neural plasticity after spinal cord injury in the lamprey central nervous system

Lau, Billy You Bun 12 November 2013 (has links)
Spinal cord injury induces anatomical plasticity throughout the nervous system, including distant locations in the brain. Several types of injury-induced plasticity have been identified, such as neurite sprouting, axon regeneration and synaptic remodeling. However, the molecular mechanisms involved in anatomical plasticity after injury are unclear, as is the extent to which injury-induced plasticity in the brain is conserved across vertebrate lineages. Here, I used lampreys to identify the molecular mechanisms in mediating anatomical plasticity, because lampreys undergo anatomical plasticity and functional recovery after a complete spinal cord transection. Due to their robust roles in neurite outgrowth during neuronal development, I examined synapsin and synaptotagmin for their potential involvement in anatomical plasticity after injury. I found increased synapsin I mRNA throughout the lamprey brain as well as increased protein levels of synapsin I, phospho-synapsin (Ser 9) and synaptotagmin in the lamprey hindbrain after injury, suggestive of anatomical plasticity. Anatomical plasticity was confirmed at the ultrastructural level, where I found increased neurite density in the lamprey hindbrain after injury. Other molecular mechanisms that promote anatomical plasticity have been previously identified, such as cyclic AMP (cAMP). However, the cellular mechanisms and the molecular targets of cAMP in mediating anatomical plasticity are unclear. My investigation of cAMP revealed that cAMP enhanced the number of regenerated axons beyond the lesion site in lampreys after injury. For the first time in a spinal cord injury model, I found cAMP prevented the death of axotomized neurons that normally have a high tendency to die after injury. In addition, cAMP promoted more regenerating axons to re-grow in straighter paths rather than turning rostrally towards the brain stem. At the molecular level, I found cAMP increased synaptotagmin protein level at the regenerating axon tips, suggestive of enhanced axon elongation. Taken together, my results show that neurite sprouting in the brain and the cAMP-enhanced axon regeneration are conserved responses in vertebrates after spinal cord injury. In addition, my results suggest that at least some developmental pathways are activated during injury-induced and cAMP-enhanced anatomical plasticity. Further understanding of these pathways will provide insights for improving recovery after spinal cord injury. / text
7

Volume and Density of Microglomeruli in the Honey Bee Mushroom Bodies Do Not Predict Performance on a Foraging Task

Van Nest, Byron N., Wagner, Ashley E., Marrs, Glen S., Fahrbach, Susan E. 01 September 2017 (has links)
The mushroom bodies (MBs) are insect brain regions important for sensory integration, learning, and memory. In adult worker honey bees (Apis mellifera), the volume of neuropil associated with the MBs is larger in experienced foragers compared with hive bees and less experienced foragers. In addition, the characteristic synaptic structures of the calycal neuropils, the microglomeruli, are larger but present at lower density in 35-day-old foragers relative to 1-day-old workers. Age- and experience-based changes in plasticity of the MBs are assumed to support performance of challenging tasks, but the behavioral consequences of brain plasticity in insects are rarely examined. In this study, foragers were recruited from a field hive to a patch comprising two colors of otherwise identical artificial flowers. Flowers of one color contained a sucrose reward mimicking nectar; flowers of the second were empty. Task difficulty was adjusted by changing flower colors according to the principle of honey bee color vision space. Microglomerular volume and density in the lip (olfactory inputs) and collar (visual inputs) compartments of the MB calyces were analyzed using anti-synapsin I immunolabeling and laser scanning confocal microscopy. Foragers displayed significant variation in microglomerular volume and density, but no correlation was found between these synaptic attributes and foraging performance.
8

Receptor A2a de adenosina: estudo da modulação da liberação de neurotransmissores em modelo in vitro / Adenosine A2a receptor: a in vitro study of neurotransmitter release modulation

Matsumoto, João Paulo de Pontes 11 December 2012 (has links)
A transmissão sináptica é essencial para o funcionamento do sistema nervoso. A neuromodulação permite regular esse processo de forma precisa. Um desses mecanismos modulatórios é a regulação da liberação de neurotransmissores. A adenosina é um importante modulador da transmissão sináptica. Além disso, a ativação do subtipo A2a dos receptores para adenosina está envolvida com a facilitação da liberação de neurotransmissores no sistema nervoso central. O presente trabalho teve como objetivo avaliar os efeitos modulatórios da ativação do receptor A2a de adenosina sobre a liberação de neurotransmissores e sua via de sinalização intracelular em modelo in vitro. Além disso, a tese contempla a construção histórica dos conceitos abordados no trabalho permitindo uma visão clara de sua evolução. Esse projeto foi o pioneiro no Brasil a utilizar o sensor biossintético fluorescente de liberação de vesículas sinápticas (supereclipse sinapto-pHluorina), o qual foi gentilmente cedido pelo professor Gero Miensenboeck do Sloan-Kettering Institute for Cancer Research. Nossos resultados demonstraram que o tratamento com o agonista do receptor A A2a de adenosina aumentou a fluorescência do supereclipse sinapto-pHluorina, assim como os níveis de glutamato e noradrenalina. Além disso, foi demonstrado que o inibidor da proteína cinase dependente de AMPc aboliu o aumento nos níveis do glutamato e noradrenalina, tal como a fosforilação da proteína sináptica sinapsina I evocado pelo agonista do receptor A2a de adenosina. Desta forma, nossos dados sugerem que a ativação do receptor A2a de adenosina em cultura de células do bulbo de ratos Wistar modula a liberação de neurotransmissores e a fosforilação da sinapsina I, assim como a proteína cinase dependente do AMPc pode ser o modus operandi desse fenômeno modulatório / Synaptic transmission is a sine qua non process for nervous system physiology. Such precise process is accomplished in part due to modulation of neurotransmitter release. Adenosine is a putative synaptic transmission modulator. Moreover, adenosine A2a receptor facilitates neurotransmitter release in the Central Nervous System. The present study focuses on the modulation of neurotransmission by adenosine A2a receptor and its intracellular signaling pathway in in vitro model. Here, we provided evidence that adenosine A2a receptor agonist increases an optical biosynthetic sensor of synaptic vesicle release (supereclipct synapto-pHluorin), as well as glutamate and noradrenaline. Furthermore, it was demonstrated that cAMP-dependent protein kinase inhibitor abolished glutamate and norepinephrin increase, as well as synapsin I phosphorylation evoked by adenosine A2a receptor agonist. Therefore, our data suggest that adenosine A2a receptor activation modulates neurotransmitter release and synapsin I phosphorylation in cultured cells from medulla oblongata of Wistar rats, as well as cAMP-dependent protein kinase might be the modus operandi of this modulatory phenomenon
9

Synapse Formation in the Zebrafish Spinal Cord

Easley-Neal, Courtney Nichelle, 1981- 09 1900 (has links)
xv, 102 p. : ill. (some col.) / This dissertation describes research to elucidate the early steps in the process of synapse formation in the zebrafish spinal cord. One question is how presynaptic proteins are trafficked and recruited to nascent synapses. Previous work has suggested two possible models of presynaptic transport, either (1) most presynaptic proteins are transported together or (2) two types of transport packets, synaptic vesicle (SV) protein transport vesicles (STVs) and Piccolo-containing active zone precursor transport vesicles (PTVs), transport the necessary components separately. We tested these models using in vivo imaging in zebrafish spinal cord and found that the recruitment of at least three distinct transport packets during presynaptic assembly of a glutamatergic synapse occurs in an ordered sequence. First, STVs are stabilized at future synaptic sites, then PTVs, followed by a third transport packet type carrying Synapsin, a cytosolic protein that can tether SVs to actin. These results identify an order to the assembly of the presynaptic terminal in vivo, suggesting that a single synaptogenic interaction may precipitate the cascade of recruitment steps. We next examined the Cadm/SynCAM family of cell adhesion molecules, a family of proteins that has been shown to be able to induce synapse formation in vitro and was thought to play a role in recruitment of presynaptic proteins. As the role of these proteins in vivo was not well understood, we chose to examine the role of the cadms in zebrafish spinal cord. We found that zebrafish possess six cadm genes, and all are expressed throughout the nervous system both during development and in the adult. We then looked at the role of one of the Cadms, Cadm2a, in vivo in the zebrafish spinal cord. We found that knockdown of cadm2a significantly decreases the ability of zebrafish embryos to respond to touch. We also found that there is a significant reduction in the number of synapses, as shown by immunohistochemistry, formed between Rohon-Beard and CoPA neurons, the first two cell types in the touch response circuit. These data suggest that Cadm2a plays an important role in synapse formation in vivo. This dissertation contains both my previously published and unpublished co-authored material. / Committee in charge: Monte Westerfield Chairperson; Philip Washbourne, Advisor; Judith Eisen, Member; Tory Herman, Member; Mike Wehr, Outside Member
10

Receptor A2a de adenosina: estudo da modulação da liberação de neurotransmissores em modelo in vitro / Adenosine A2a receptor: a in vitro study of neurotransmitter release modulation

João Paulo de Pontes Matsumoto 11 December 2012 (has links)
A transmissão sináptica é essencial para o funcionamento do sistema nervoso. A neuromodulação permite regular esse processo de forma precisa. Um desses mecanismos modulatórios é a regulação da liberação de neurotransmissores. A adenosina é um importante modulador da transmissão sináptica. Além disso, a ativação do subtipo A2a dos receptores para adenosina está envolvida com a facilitação da liberação de neurotransmissores no sistema nervoso central. O presente trabalho teve como objetivo avaliar os efeitos modulatórios da ativação do receptor A2a de adenosina sobre a liberação de neurotransmissores e sua via de sinalização intracelular em modelo in vitro. Além disso, a tese contempla a construção histórica dos conceitos abordados no trabalho permitindo uma visão clara de sua evolução. Esse projeto foi o pioneiro no Brasil a utilizar o sensor biossintético fluorescente de liberação de vesículas sinápticas (supereclipse sinapto-pHluorina), o qual foi gentilmente cedido pelo professor Gero Miensenboeck do Sloan-Kettering Institute for Cancer Research. Nossos resultados demonstraram que o tratamento com o agonista do receptor A A2a de adenosina aumentou a fluorescência do supereclipse sinapto-pHluorina, assim como os níveis de glutamato e noradrenalina. Além disso, foi demonstrado que o inibidor da proteína cinase dependente de AMPc aboliu o aumento nos níveis do glutamato e noradrenalina, tal como a fosforilação da proteína sináptica sinapsina I evocado pelo agonista do receptor A2a de adenosina. Desta forma, nossos dados sugerem que a ativação do receptor A2a de adenosina em cultura de células do bulbo de ratos Wistar modula a liberação de neurotransmissores e a fosforilação da sinapsina I, assim como a proteína cinase dependente do AMPc pode ser o modus operandi desse fenômeno modulatório / Synaptic transmission is a sine qua non process for nervous system physiology. Such precise process is accomplished in part due to modulation of neurotransmitter release. Adenosine is a putative synaptic transmission modulator. Moreover, adenosine A2a receptor facilitates neurotransmitter release in the Central Nervous System. The present study focuses on the modulation of neurotransmission by adenosine A2a receptor and its intracellular signaling pathway in in vitro model. Here, we provided evidence that adenosine A2a receptor agonist increases an optical biosynthetic sensor of synaptic vesicle release (supereclipct synapto-pHluorin), as well as glutamate and noradrenaline. Furthermore, it was demonstrated that cAMP-dependent protein kinase inhibitor abolished glutamate and norepinephrin increase, as well as synapsin I phosphorylation evoked by adenosine A2a receptor agonist. Therefore, our data suggest that adenosine A2a receptor activation modulates neurotransmitter release and synapsin I phosphorylation in cultured cells from medulla oblongata of Wistar rats, as well as cAMP-dependent protein kinase might be the modus operandi of this modulatory phenomenon

Page generated in 0.0374 seconds