1 |
Modelling of pyroelectric detectors detection by digital signal processing algorithmsEfthymiou, Spyros January 2013 (has links)
Pyroelectric Detector (PED) models are developed considering the classical heat balance equation to simulate the detector’s response under specified radiation conditions. Studies on the behaviour of a PED are presented under the conditions of step function and a pulsed load. Finite Element Methods (FEMs) have been used to obtain 3D models of the resulting temperature field in a Lithium Tantalate (LiTaO3) pyroelectric crystal, incorporated in a complete commercial detector, taking into account details of its geometry and thermal connectivity. The novelty is the achieved facility to predict the response to pulsed radiation, which is valuable for the engineering of pulsed-source sensor systems requiring detection at room temperature. In this thesis, we present a signal processing (SP) algorithm, which combines the principle of Quadrature Synchronous Demodulation (QSD) and Gated Integration (GI), to achieve an improved signal-to-noise ratio (SNR) in pulsed signal measurements. As a first step, the pulse is bracketed by a gating window and the samples outside the window are discarded. The gate duration is calculated to ensure that the periodic signal at the output has an 'apparent' duty factor close to 0.5. This signal is then fed continuously for QSD to extract the magnitude and phase of its fundamental component, referenced to a sinusoidal signal with period defined by the gate length. An improved SNR performance results not only from the increase of the average signal energy, but also from the noise suppression inherent to the QSD principle. We introduce this method as Gated Quadrature Synchronous Demodulation (GQSD), emphasizing the synergy between GΙ and QSD.
|
2 |
A DSP embedded optical naviagtion systemGunnam, Kiran Kumar 30 September 2004 (has links)
Spacecraft missions such as spacecraft docking and formation flying require high precision relative position and attitude data. Although Global Positioining Systems can provide this capability near the earth, deep space missions require the use of alternative technologies. One such technology is the vision-based navigation (VISNAV) sensor system developed at Texas A&M University. VISNAV comprises an electro-optical sensor combined with light sources or beacons. This patented sensor has an analog detector in the focal plane with a rise time of a few microseconds. Accuracies better than one part in 2000 of the field of view have been obtained. This research presents a new approach involving simultaneous activation of beacons with frequency division multiplexing as part of the VISNAV sensor system. In addition, it discusses the synchronous demodulation process using digital heterodyning and decimating filter banks on a low-power fixed point DSP, which improves the accuracy of the sensor measurements and the reliability of the system. This research also presents an optimal and computationally efficient six-degree-of-freedom estimation algorithm using a new measurement model based on the attitude representation of Modified Rodrigues Parameters.
|
3 |
A DSP embedded optical naviagtion systemGunnam, Kiran Kumar 30 September 2004 (has links)
Spacecraft missions such as spacecraft docking and formation flying require high precision relative position and attitude data. Although Global Positioining Systems can provide this capability near the earth, deep space missions require the use of alternative technologies. One such technology is the vision-based navigation (VISNAV) sensor system developed at Texas A&M University. VISNAV comprises an electro-optical sensor combined with light sources or beacons. This patented sensor has an analog detector in the focal plane with a rise time of a few microseconds. Accuracies better than one part in 2000 of the field of view have been obtained. This research presents a new approach involving simultaneous activation of beacons with frequency division multiplexing as part of the VISNAV sensor system. In addition, it discusses the synchronous demodulation process using digital heterodyning and decimating filter banks on a low-power fixed point DSP, which improves the accuracy of the sensor measurements and the reliability of the system. This research also presents an optimal and computationally efficient six-degree-of-freedom estimation algorithm using a new measurement model based on the attitude representation of Modified Rodrigues Parameters.
|
Page generated in 0.1179 seconds