• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rheological characterization of Xanthan-guar mixtures in dilute solutions

Khouryieh, Hanna Anton Michael January 1900 (has links)
Doctor of Philosophy / Food Science Program / Fadi M. Aramouni / Thomas J. Herald / Dynamic viscoelastic and intrinsic viscosity properties of native xanthan, deacetylated xanthan, guar, and their mixtures in dilute solutions were investigated by using an oscillating capillary rheometer. Influence of mixing temperature, deacetylation, and salt concentration on xanthan conformation and interaction with guar were studied in order to provide additional evidence that can be used to elucidate the mechanism of the intermolecular interaction between the two biopolymers, and build up a more detailed rheological understanding of molecular interactions between xanthan and guar gum in dilute solutions. Synergistic interaction was found at mixing temperatures of 25 and 80 °C, but a stronger synergistic interaction was observed at mixing temperature of 80 °C. The differences in viscosity and elasticity measurements between the two mixing temperatures could be attributed to the degree of disordering of xanthan. For both mixing temperatures, the relative viscosity and elasticity of xanthan and guar blends were higher than the relative viscosity and elasticity calculated for blends assuming no interaction, indicating that intermolecular binding occurred between galactomannans backbone and disordered segments of xanthan. Deacetylated xanthan exhibited a stronger synergistic interaction with guar than native xanthan. The intrinsic viscosities of deacetylated xanthan-guar mixtures were higher than those calculated from the weight averages of the two individually, whereas the intrinsic viscosities of native xanthan-guar mixtures were lower than those calculated from weight averages of the two individually, demonstrating that intermolecular binding occurred between xanthan and guar gum. Synergistic interaction for both native xanthan-guar mixtures and deacetylated xanthan-guar mixtures in the dilute regime was observed in water and 2 mM NaCl but not in 40 mM NaCl. The results suggest that intermolecular interaction has occurred between xanthan and guar mixtures in water and 2 mM NaCl, but may not occur in 40 mM NaCl and mutual incompatibility may take place. These results also suggest that degree of disordering of xanthan played a critical role in xanthan-guar interaction and may explain the differences in viscosity, elasticity, and intrinsic viscosity measurements between 2 and 40 mM NaCl, and hence, the intermolecular interaction occurred between the backbone of guar gum and the disordered segments of xanthan.
2

CHARACTERIZATION OF BACTERIAL LIPOPOLYSACCHARIDES (Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. apii) AND PECTINS OF TOMATO AND CELERY PLANTS (Lycopersicon esculentum and Apium graveolens) REGARDING THEIR POSSIBLE ROLE IN HOST/PATHOGEN-INTERACTION / KENNZEICHNUNG VON BAKTERIELLEN LIPOPOLYSACCHARIDES (Pseudomonas syringae pv. tomato und Pseudomonas syringae pv. apii) UND DER PEKTINE DER TOMATO-UND SELLERIE-PFLANZEN (Lycopersicon esculentum und Apium graveolens) BETREFFEND IHRE MÖGLICHE ROLLE IN HAUPTRECHNER KRANKHEITSERREGER-INTERAKTION

Venkatesh, Balakrishnan 19 June 2002 (has links)
No description available.
3

Sensory Stressors Impact Species Responses Across Local and Continental Scales

Wilson, Ashley A 01 September 2020 (has links) (PDF)
Pervasive growth in industrialization and advances in technology now exposes much of the world to anthropogenic night light and noise (ANLN), which pose a global environmental challenge in terrestrial environments. An estimated one-tenth of the planet’s land area experiences artificial light at night — and that rises to 23% if skyglow is included. Moreover, anthropogenic noise is associated with urban development and transportation networks, as the ecological impact of roads alone is estimated to affect one-fifth of the total land cover of the United States and is increasing in space and intensity. Existing research involving impacts of light or noise has primarily focused on a single sensory stressor and single species; yet, little information is known about how different sources of sensory stressors impact the relationships within tightly-knit and complex systems, such as within plant-pollinator communities. Furthermore, ANLN often co-occur, yet little is known about how co-exposure to these stressors influences wildlife, nor the extent and scale of how these stressors impact ecological processes and patterns. In Chapter 1, we had two aims: to investigate species-specific responses to artificial night light, anthropogenic noise, and the interaction between the two by using spatially-explicit models to model changes in abundance of 140 of the most prevalent overwintering bird species across North America, and to identify functional traits and contexts that explain variation in species-specific responses to ANLN stressors with phylogenetically-informed models. We found species that responded to noise exposure generally decreased in abundance, and the interaction with light resulted in negative synergistic responses that exacerbated the negative influence of noise among many species. Moreover, the interaction revealed negative emergent responses of species that only reacted when both ANLN were presented in combination. The functional trait that was the most indicative of avian response to ANLN was habitat preference. Specifically, species that occupy closed habitat were less tolerant of both sensory stressors compared to those that occupy open habitat. Species-specific responses to ANLN are context-dependent; thus, knowing the information that regulates when, where, how, and why sensory pollutants influence species will help management efforts effectively mitigate these anthropogenic stressors on the natural environment. In Chapter 2, using field-placed light manipulations at sites exposed to a gradient of skyglow, we investigated the influence of direct and indirect light on the yucca-yucca moth mutualism by quantifying chaparral yucca (Hesperoyucca whipplei) fruit set and the obligate moth (Tegeticula maculata maculata) larval density per fruit. Although many diurnal insects are thought to exhibit minimal phototaxis, we show that direct light attracted adult moths and incited higher pollination activity, resulting in an increase in fruit set. However, larval recruitment decreased with elevated light exposure and the effect was strongest for plants exposed to light levels exceeding natural moonlit conditions (> 0.5 lux). Contrarily, increases in ambient skyglow resulted in an increase in both fruit set and larva counts. Our results suggest that plant-pollinator communities may respond in complicated ways to different sources of light, such that novel selection pressures of direct and indirect light have the potential to benefit or disrupt networks within complex diurnal plant-pollinator communities, and ultimately alter the biodiversity reliant on these systems. By analyzing pervasive stressors across a continental-wide scale, we revealed considerable heterogeneity in avian responses to light and noise alone, as well as the interaction between them. Based on overall responses to the interaction between light v and noise, we suggest management efforts should focus on ameliorating excessive noise for overwintering bird species, which should decrease the impact from synergistic responses, as well as the negative impact from noise alone. There is still much to learn about responses to these stressors and smaller-scale studies should take our approach of systematically assessing interaction responses to ANLN. Moreover, our small-scale study revealed both local sources of direct light and skyglow impact the recruitment for both yucca moths and their reciprocal plant hosts. However, it is still unknown if or why other diurnal pollinators experience positive phototaxis, and whether direct lighting influences the physiology, behavior, or multiple factors relating to reproduction and fitness. Correspondingly, it is unknown if the novel selection pressures of direct and indirect light are disrupting complex diurnal plant-pollinator communities. Future research on artificial night light will need to investigate the intricate responses of diurnal pollinators to both direct and indirect light that will identify concrete mechanisms relating to physiological or behavioral susceptibility and inform predictions on how wide-spread communities will shift with this global driver of emerging change.

Page generated in 0.1523 seconds