• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Study of the PVTX Properties of the System H₂O-CH₄

Lin, Fang 21 October 2005 (has links)
The system H₂O-CH₄ is found in a variety of geological environments in the earth’s crust, from sedimentary basins to low grade metamorphic terrains. Knowledge of the PressureVolume-Temperature-Composition (PVTX) properties of the H₂O-CH₄ system is necessary to understand the role that these fluids play in different geological environments. In this study the properties of the H₂O-CH₄ fluid system at elevated temperatures and pressures has been investigated experimentally to determine the PVTX properties of H₂O-CH₄ fluids in the P-T range equivalent to late diagenetic to low grade metamorphic environments, and XCH₄≤4mol%. A study has also been conducted to determine methane hydrate stability over the temperature range of -40~20°C. Synthetic fluid inclusions were employed in both studies as miniature autoclaves. Experimental data for the PVTX properties of H₂O-CH₄ fluids under late diagenetic to low grade metamorphic conditions was used to calculate the slopes of isoTh lines (the line connecting the P-T conditions of the inclusions at formation and at homogenization) at different PTX conditions. An empirical equation to describe the slope of iso-Th line as a function of homogenization temperature and fluid composition was developed. The equation is applicable to natural H₂O-CH₄ fluid inclusions up to 500°C and 3 kilobars, for fluid compositions ≤4 mol% CH₄. The Raman peak position of CH₄ gas is a function of the pressure and temperature. This relationship was used to determine the pressure along the methane hydrate stability curve in the H₂O-CH₄ system. The combined synthetic fluid inclusion, microthermometry and Raman spectroscopy method is a novel experimental approach to determine the P-T stability conditions of methane hydrates. The method is fast compared to conventional methods, and has the potential to be applied to study other gas hydrate systems. / Ph. D.
2

Geochemistry of fluid-rock processes

Lamadrid De Aguinaco, Hector M. 14 June 2016 (has links)
When these fluids interact with the surrounding rocks, small aliquots of these fluids are trapped as imperfections in the crystal lattice and fractures of minerals. These microscopic features are called fluid and melt inclusions, and are one of the best tools available to probe, measure and determine the chemical and physical properties of crustal fluids. In the present study we examine new developments into our understanding of fluid-rock interactions using fluid and melt inclusion as tools to provide insights into the evolution of the Earth's crust from the deep continental crust to the surface. Chapter II "Raman spectroscopic characterization of H2O in CO2-rich fluid inclusions in granulite facies metamorphic rocks", is a brief review of the current understanding of granulite rocks and their formation, and a new development into our ability to characterize the composition of the fluids trapped as fluid inclusions in minerals in granulite facies rocks. Chapter III "Reassessment of the Raman CO2 densimeter", details new developments in the use of the Raman spectroscopy to characterize the density of CO2. In this chapter we describe briefly the Raman effect of CO2 and the density dependence of the Fermi diad using different Raman instruments, laser sources and gratings to understand the differences in the published data. Chapter IV "Serpentinization reaction rates measured in olivine micro-batch reactors" describes new insights into the serpentinization process by using olivine micro-reactors. The micro-reactor technique is a new experimental development that allows researchers to monitor the fluid chemistry as well as the mineral composition changes inside synthetic fluid inclusion. / Ph. D.
3

Low Temperature Phase Relations in the System H2O-NaCl-FeCl2

Baldassaro, Paige Marie 09 February 2000 (has links)
The low temperature phase behavior of the system H2O-NaCl-FeCl2 was examined using synthetic fluid inclusions. Experiments were conducted along the 5 wt% NaCl (relative to the total solution) pseudobinary, with FeCl2 concentrations varying from 2 to 33 wt%, and along the pseudobinary defined by mixing known amounts of FeCl2-4H2O with a 5 wt% NaCl solution, with final FeCl2 concentrations varying from 0 to 29 wt%. Synthetic fluid inclusions in quartz were prepared in cold-seal pressure vessels at 500 degrees C - 800 degrees C and 2 or 3 kilobars. The fO2 conditions were controlled by the Ni-NiO equilibrium curve. The liquid released from the capsule upon opening was initially colorless, but turned yellow-orange after contact with atmospheric O2. The clear color is characteristic of ferrous iron solutions, whereas the yellow-orange color is consistent with the presence of Fe3+ in solution. This color change suggested that the unopened capsules initially contained ferrous iron in solution, which oxidized to ferric iron when exposed to the atmosphere. Borisenko (1977) reported a eutectic temperature of -37 degrees C for the system H2O-NaCl-FeCl2. In this study, it was not possible to verify this temperature due to the persistence of a metastable liquid down to liquid N2 temperatures (~-196 degrees C). Final ice melting temperatures were obtained for concentrations less than 24 wt% FeCl2 and show a decrease in temperature with increase in FeCl2 concentration. For more concentrated solutions, final melting temperatures could not be obtained because the samples could not be frozen. / Master of Science
4

The Role of Fluids in Geological Processes

Azbej, Tristan 17 September 2007 (has links)
The role and behavior of fluids in hydrothermal and magmatic environments have been studied. Experimental studies have been carried out to determine fluid properties, in natural environments and in both synthetic and natural fluid and melt inclusions. One of these studies dealt with the effect of composition on the critical P-T-X properties of aqueous salt solutions approximated by the H₂O-NaCl-KCl-CaCl₂ system. The results indicate a systematic variation in critical properties as a function of composition over the range of P-T-X studied. A technique for analyzing individual H₂O-CO₂ inclusions using Raman spectroscopy has also been developed. The resulting empirical equation relating Raman intensities and composition is valid for compositions ≤50mol% CO₂. The technique has been applied to H₂O-CO₂ inclusions from the Butte, MT Porphyry Cu-Mo deposit and the results agree with compositions estimated from microthermometric and petrographic observations. The aim of another study was to study water loss from melt inclusions during laboratory heating. Melt inclusions had lost insignificant amounts of water when held at experimental conditions (800°C, 1 kbar) for ≤24 hours. However, significant water loss was observed for longer duration experiments. Ocelli, which are globular bodies of felsic minerals are interpreted as products of magmatic melt immiscibility. As such, the carbonate aggregates in Cretaceous lamprophyres from Hungary with similar petrographic characteristics have also generally been interpreted to be products of magmatic immiscibility. Petrographic and geochemic studies have shown three three distinct genetic groups for these aggregates, none of which were consistent with a magmatic origin. / Ph. D.
5

Experimental Study of the PVTX Properties in Part of the Ternary System H₂O-NaCl-CO₂

Schmidt, Christian 21 March 1997 (has links)
Phase equilibria and volumetric properties in the system water-sodium chloride-carbon dioxide were determined experimentally for pressures between about 1 to 6 kbar, temperatures of 300° to 800°C, and fluid compositions up to 40 wt% NaCl and 20 mol% carbon dioxide, both relative to water. This was accomplished by using the synthetic fluid inclusion technique in conjunction with conventional microthermometry, a hydrothermal diamond-anvil cell and Raman spectroscopy. At constant salinity, the high-pressure portion of the solvus migrates to higher pressures and temperatures with increasing carbon dioxide concentration. Immiscibility is possible in this ternary system over almost the entire range of crustal P-T conditions at salinities equal to or in excess of 20 wt% NaCl and carbon dioxide concentrations between about 30 and 70 mol% carbon dioxide. The dP/dT slopes of lines of equal homogenization temperature decrease nonlinearly with increasing homogenization temperature; at constant homogenization temperature, these slopes become steeper (higher) along pseudobinaries with addition of carbon dioxide and particularly with addition of sodium chloride. Up to concentrations of 20 wt% NaCl and 20 mol% carbon dioxide, a sharp rise in the critical temperature was observed with increasing salinity at a fixed water/carbon dioxide ratio. The critical point shifts rapidly towards higher pressures with increasing carbon dioxide concentration. Addition of carbon dioxide to an aqueous 40 wt% NaCl solution results in a slight elevation of the halite dissolution temperature under vapor-saturated conditions. A significant error can be associated with the calculation of molar volumes from measured densities of the carbonic phase of water-sodium chloride-carbon dioxide inclusions. To avoid such errors, phase diagrams were constructed based on the obtained lines of equal homogenization temperature for salinities between 6 and 40 wt% NaCl and carbon dioxide concentrations between 5 and 20 mol% relative to water. These diagrams are of direct applicability to the interpretation of natural fluid inclusions from a wide variety of geologic environments. / Ph. D.

Page generated in 0.1187 seconds