• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 12
  • 12
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Novel methods of drag reduction for squareback road vehicles

Littlewood, Rob January 2013 (has links)
Road vehicles are still largely a consumer product and as such the styling of a vehicle becomes a significant factor in how commercially successful a vehicle will become. The influence of styling combined with the numerous other factors to consider in a vehicle development programme means that the optimum aerodynamic package is not possible in real world applications. Aerodynamicists are continually looking for more discrete and innovative ways to reduce the drag of a vehicle. The current thesis adds to this work by investigating the influence of active flow control devices on the aerodynamic drag of square back style road vehicles. A number of different types of flow control are reviewed and the performance of synthetic jets and pulsed jets are investigated on a simple 2D cylinder flow case experimentally. A simplified ¼ scale vehicle model is equipped with active flow control actuators and their effects on the body drag investigated. The influence of the global wake size and the smaller scale in-wake structures on vehicle drag is investigated and discussed. Modification of a large vortex structure in the lower half of the wake is found to be a dominant mechanism by which model base pressure can be influenced. The total gains in power available are calculated and the potential for incorporating active flow control devices in current road vehicles is reviewed. Due to practicality limitations the active flow control devices are currently ruled out for implementation on a road vehicle. The knowledge gained about the vehicle model wake flow topology is later used to create drag reductions using a simple and discrete passive device. The passive modifications act to support claims made about the influence of in wake structures on the global base pressures and vehicle drag. The devices are also tested at full scale where modifications to the vehicle body forces were also observed.
12

Estudo experimental de jatos sintéticos para resfriamento

Woyciekoski, Marcos Leandro 03 1900 (has links)
Submitted by Fabricia Fialho Reginato (fabriciar) on 2015-08-27T23:08:49Z No. of bitstreams: 1 MarcosWOYCIEKOSKI.pdf: 2220255 bytes, checksum: 001c865faf4b29be82c72c3341fa51a4 (MD5) / Made available in DSpace on 2015-08-27T23:08:49Z (GMT). No. of bitstreams: 1 MarcosWOYCIEKOSKI.pdf: 2220255 bytes, checksum: 001c865faf4b29be82c72c3341fa51a4 (MD5) Previous issue date: 2012-03 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Com a rápida evolução da tecnologia, os dispositivos eletrônicos tornaram-se compactos e com o alto poder de processamento, aumentando a geração de calor. Mas devido à baixa eficiência de ventiladores e dissipadores utilizados atualmente, há a necessidade de desenvolver novas formas de resfriamento. O uso de jatos sintéticos no resfriamento de dispositivos eletrônicos ainda é incipiente. Estudos monstram que este método pode ser uma alternativa eficaz. Assim, neste trabalho foi desenvolvido um estudo experimental com jatos sintéticos onde foram analisadas diferentes configurações de jatos com orifício retangular. Um alto-falante foi utilizado como diafragma e excitado através de um gerador de sinais senoidais para produzir o jato. A frequência de ressonância era desconhecida e foi necessário analisá-la antes de iniciar o experimento. O sistema foi montado em um suporte móvel para que fosse possível variar a posição vertical do gerador de jatos. Foram analisadas as dimensões do orifício para diferentes diâmetros hidráulicos (4 – 8 mm) e razões de aspecto (2 – 4), como também a profundidade da cavidade (2 – 8 mm). Também se analisou a transferência de calor através do impacto de jatos sobre uma placa aquecida. Dentre os estudos, verificaram-se outros parâmetros como o número de Reynolds e o número de Strouhal a fim de calcular a frequência mais adequada para a produção de vórtices. Os resultados demonstraram que para orifícios retangulares, as configurações com diâmetro hidráulico maior e razão de aspecto menor, são as melhores opções para resfriamento dos dispositivos eletrônicos. / With the rapid evolution of technology, electronics have become more compact and with higher processing power, increasing heat generation. Thus, there is a need to develop new forms of cooling, due to the low efficiency of cooling fans and heatsinks used currently. Using synthetic jets for cooling electronic device is still incipient but studies show that this method is an effective alternative. Thus, this work was developed an experimental study with synthetic jets where different configurations were tested with rectangular orifice. A loudspeaker was used as diaphragm and it was excited by a sinusoidal signal generator to produce the jet. The previously unknown ressonant frequency was determined experimentaly as part of this study. The system was mounted on a vertical traverse to allow changes in the vertical position of the synthetic jet generator. Orifice dimensions were analyzed covering variations in hydraulic diameter (4-8 mm) and aspect ratio (2-4), as well as the depth of the cavity (2-8 mm). Also the heat transfer was examined through the jet impingement on a hot plate. Other parameters such as Reynolds and Strouhal number were also examined in order to calculate the best frequency for jet performance. Results show that for rectangular orifice, geometries with larger hydraulic diameter and aspect ratio smaller are the best options for electronic cooling devices.
13

Quantitative Acetone PLIF Measurements of Jet Mixing with Synthetic Jet Actuators

Ritchie, Brian Douglas 11 April 2006 (has links)
Fuel-air mixing enhancement in axisymmetric jets using an array of synthetic jet actuators around the perimeter of the flows (primarily parallel to the flow axis) was investigated using planar laser-induced fluorescence of acetone. The synthetic jets are a promising new mixing control and enhancement technology with a wide range of capabilities. An image correction scheme that improved on current ones was applied to the images acquired to generate quantitative mixing measurements. Both a single jet and coaxial jets were tested, including different velocity ratios for the coaxial jets. The actuators run at a high frequency (~1.2 kHz), and were tested with all of them on and in other geometric patterns. In addition, amplitude modulation was imposed at a lower frequency (10-100 Hz). The actuators generated small-scale structures in the outer (and inner, for the coaxial jets) mixing layers. These structures significantly enhanced the mixing in the near field (x/D less than 1) of the jets, which would be useful for correcting an off-design condition in a combustor. The amplitude modulation generated large-scale structures that became apparent farther downstream (x/D greater than 1). The impulse at the start of the duty cycle was responsible for creating the structures. The large structures contained broad regions of uniformly mixed fluid, and also entrained fluid significantly. In addition, highly asymmetric forcing geometries displayed the power of the actuators to control the spatial distribution of jet fluid. This spatial control is important for the correction of hot spots in the pattern factor. In order to extend quantitative acetone PLIF to two-phase flows, the remaining unknown photophysical properties of acetone were identified. Tests showed that the technique could simultaneously capture acetone vapor and acetone droplets. A model of droplet fluorescence was developed, and applied to images acquired in a dilute spray. The sensitivity of the model to the value of the unknowns was evaluated, including a best and worst case. The results revealed that several liquid acetone photophysical properties must be measured for the further development of the technique, especially the phosphorescence yield. Quantitative two-phase acetone PLIF will provide a powerful new tool for studying spray flows.
14

Análise das características de operação e desempenho de micro jatos sintéticos

Esteves, Fernanda Munhoz 27 November 2012 (has links)
Submitted by Maicon Juliano Schmidt (maicons) on 2015-03-20T19:50:03Z No. of bitstreams: 1 000002F2.pdf: 1101205 bytes, checksum: 35ea0ac880e5841836ff1b5e64d2f9ff (MD5) / Made available in DSpace on 2015-03-20T19:50:04Z (GMT). No. of bitstreams: 1 000002F2.pdf: 1101205 bytes, checksum: 35ea0ac880e5841836ff1b5e64d2f9ff (MD5) Previous issue date: 2012-11-27 / CNPQ – Conselho Nacional de Desenvolvimento Científico e Tecnológico / Componentes eletrônicos estão cada vez mais potentes, necessitando de dissipações térmicas maiores. Os ventiladores atuais, conhecidos comercialmente como "coolers", estão se tornando ineficientes para esta evolução por dependerem de uma maior vazão para atender a demanda de calor dissipado, o que também causa aumento no seu ruído. Como uma alternativa para aprimorar a troca de calor, estudam-se (micro) jatos sintéticos. Estes são produzidos através de uma cavidade selada por uma membrana oscilatória e uma placa com um orifício. A movimentação periódica da membrana produz um jato com valor positivo de quantidade de movimento, que pode ser direcionado para o resfriamento de um dispositivo eletrônico.Para análise térmica, um modelo numérico do dispositivo de refrigeração foi construído em ANSYS CFX 12.0. Variações nos números de Reynolds e Strouhal dos jatos sintéticos e posição da região aquecida na superfície de interesse foram realizadas e seu efeito no desempenho térmico analisado. Os resultados foram comparados a um escoamento convencional de mesma geometria em regime permanente e submetido à mesma vazão mássica média induzida por cada jato sintético. Para a configuração testada, observou-se que os (micro) jatos sintéticos podem fornecer um fluxo de ar mais direcionado para os "hotspots" com maior necessidade de resfriamento. Os resultados encontrados indicam um aumento de número de Nusselt até 122% em jatos sintéticos comparados aos escoamentos contínuos. Logo, confirmam o maior desempenho térmico do jato sintético em relação ao método convencional equivalente e justificam a necessidade de investigações adicionais nesta área. Isto indica que os jatos sintéticos podem ser personalizados ou direcionados especificamente para atender a demanda de resfriamento do problema de interesse. / The rising power consumption of electronic components requires higher and higher thermal dissipation. Current fan systems, commercially known as "coolers", are becoming ineffective to cope with this demand since their performance is dependent on the volumetric flow rate of the driving fan, which becomes more wasteful and noisy. An alternative to improve the heat exchange of current systems is the application of (micro) synthetic jets. These are produced by the oscillations in a cavity bounded by a membrane and a plate with an orifice. Membrane actuation produces a net forward momentum jet through the orifice, which can be applied to cool an electronic device. For this analysis, a numerical model of the cooling device was built on ANSYS CFX 12.0. Variations in jet Reynolds and Strouhal numbers and positioning of the heated region of interest were made and their effect on thermal performance analyzed. Results were compared to a conventional flow with the same geometry but subjected to a single-fan providing steady flow with the same average mass flow rate induced by each synthetic jet. For the configurations tested, it was found that (micro) synthetic jets may provide more directed air flow for "hotspots" with the greatest need of cooling. The results indicate a thermal performance up to 122% higher compared to their equivalent conventional cooling case. This confirmation of the higher thermal performance of synthetic jets relative to a convencional method and justifies the need for the current and additional investigations in this area. Results also indicate that synthetic jets can be customized and specifically directed to meet the cooling demand of the problem in question.
15

Caracterização fluidodinâmica e térmica de jatos sintéticos

Lehnen, Matheus Vicenzo 05 1900 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2015-07-08T14:34:31Z No. of bitstreams: 1 Matheus Vicenzo Lehnen.pdf: 7507080 bytes, checksum: 1036a30adcb3840ea0e5fcb545f29987 (MD5) / Made available in DSpace on 2015-07-08T14:34:31Z (GMT). No. of bitstreams: 1 Matheus Vicenzo Lehnen.pdf: 7507080 bytes, checksum: 1036a30adcb3840ea0e5fcb545f29987 (MD5) Previous issue date: 2012-05 / Milton Valente / Nos dias atuais, os componentes eletrônicos estão cada vez mais potentes e com mais dispositivos integrados e há a necessidade de uma dissipação térmica mais eficiente. Os atuais ventiladores e dissipadores de calor usando ar como fluido de trabalho estão ficando obsoletos. Por este motivo, torna-se necessário o desenvolvimento de um sistema mais eficiente. Existem três técnicas principais em estudo nesta área: resfriamento líquido, trocadores de calor compostos por microcanais e jatos sintéticos como transmissores de quantidade de movimento ao fluido. Entretanto, a análise em pequena escala encontra limitações experimentais de modo que uma abordagem por Dinamica de Fluidos Computacional (Computational Fluid Dynamics – CFD) é mais recomendável para caracterizar e validar o desempenho dos jatos sintéticos. O objetivo principal deste trabalho é realizar uma análise fluidodinâmica de jatos sintéticos e caracterizar a troca térmica de jatos sintéticos colidindo sobre uma superfície aquecida, através de simulação numérica. A flexibilidade da aproximação numérica também possibilita o estudo da sensibilidade do design a vários parâmetros físicos e geométricos, tais como o número de Reynolds, a frequência do atuador, o número de Prandtl, a distância da placa aquecida ao orifício da cavidade, o formato do orifício do atuador, a profundidade da cavidade e a espessura da placa do orifício. Os resultados caracterizam o efeito dos parâmetros físicos e geométricos de interesse na formação do jato e na dissipação térmica. O conhecimento agregado neste estudo permitiu determinar uma correlação para o número de Nusselt em função da frequência adimensional – o número de Strouhal – do número de Reynolds, do número de Prandtl e da distância adimensional da superfície aquecida ao orifício. Assim, é possível prever o comportamento de tais jatos sobre a superfície aquecida, e assim contribuir para os atuais estudos nesta linha de pesquisa. Os resultados apresentados tem então aplicação em estudos posteriores, de maior complexidade de design com atuadores combinados com trocadores de calor de aletas, coolers e micro canais, resultando em avanços na área de resfriamento de microchips. / Current electronic components are becoming ever more potent and densly integrated, which requires further increases in the efficiency of heat dissipation. With current fan-based heat dissipation techniques with air as the working fluid becoming outdated, there is a pressing need to develop more eficient methods to cope with demand. So far, three techniques have been the primary focus of studies in this area: liquid cooling, microchannel heat exchangers and synthetic jets used to promote increased momentum transfer. Analysis of such devices at the small physical scale of electronic components is somewhat problematic in experimental form so that a computational fluid dynamics (CFD) approach is recommended. The main objective of this study is thus to utilize a CFD approach to establish the performance characteristics of a synthetic jet impacting against a heated surface. The flexibility of a numerical approach also allows the examination of the sensibility of the design with respect to several physycal and geometric parameters such as Reynolds number, pulsing frequency, jet orifice shape and size, cavity size and distance between the heated surface and the device. Such results, provide insight in the effect of physical and geometric parameters in the jet formation and heat dissipation. The combined knowledge of this study allowed the development of a practical correlation for the Nusselt number based on the Strouhal number (normalized pulsing frequency), Reynolds number, Prandtl number and the distance between the heated surface and the synthetic jet. This result allows improved predictions of a jet impacting against a heated surface and, consequently, adds an important contribution to other studies in this area. It is expected that the results presented here will be the starting point for further work, in which increasingly complex geometries such as actuators combined with heat exchangers equipped with fins, coolers or microchannels are examined to further improve the knowledge in the field of electronic cooling.
16

Contrôle du sillage d'un corps non profilé : application expérimentale à une maquette simplifiée de véhicule industriel / Flow control of bluff body wakes : experimental application to a simplified truck model

Chaligné, Sébastien 12 December 2013 (has links)
Ce manuscrit présente les travaux de thèse réalisés dans le cadre d’une convention CIFRE entre Renault Trucks et le LMFA. Une stratégie de contrôle d’écoulement, associant un volet déflecteur et des actionneurs de type jets pulsés et synthétiques, est étudiée expérimentalement en vue de réduire la traînée aérodynamique de corps non profilés à culot droit. Une première approche consiste à étudier l’influence de cette stratégie sur une maquette bidimensionnelle. Des mesures de vitesse dans le sillage proche par TR-PIV et par anémométrie à fil chaud démontrent qu’une certaine gamme de fréquence d’actionnement permet à l’écoulement de recoller sur le volet et de diminuer les fluctuations de vitesse dans la zone de recirculation, ce qui engendre une augmentation de la pression au culot. Une analyse par moyenne de phase et la détermination de corrélations spatio-temporelles permettent d’identifier les perturbations induites par le contrôle conduisant à ces modifications de l’écoulement. Un système de jets synthétiques est ensuite intégré à une maquette simplifiée de véhicule poids lourd à l’échelle 1/8e, dont le sillage est représentatif des remorques réelles. Des gains en traînée significatifs sont obtenus et sont associés aux mêmes phénomènes aérodynamiques que pour la maquette bidimensionnelle. Enfin, une étude paramétrique montre la robustesse du contrôle aux caractéristiques de la couche limite incidente aux jets et à la longueur du volet déflecteur. / This document presents the research work realized in the scope of a PhD thesis with Renault Trucks and the LMFA. A flow control strategy, combining an inclined flap with pulsed or synthetic jets, is experimentally studied to reduce the aerodynamic drag of square-back bluff bodies. A first approach consists in studying the effect of this strategy on the flow behind a twodimensional model. The near-wake flow is characterized by the use of velocity measurements obtained by Time-Resolved Particles Image Velocimetry and hot-wire Anemometry. These measurements show that the increase in rear base pressure, obtained in a specific range of actuation frequencies, is associated with the reattachment of the flow on the flap and with a decrease in velocity fluctuations within the recirculation area. A phase average analysis and the determination of space-time correlations allow identifying the aerodynamic disturbances induced by the control system and leading to these modifications of the wake flow. A synthetic jet system is integrated to a 1 :8 scale simplified truck model, with a wake flow similar to this of real trailers. Significant drag reductions are obtained using active control and are associated with the same flow phenomena as these observed in the two-dimensional model study. Eventually, a parametric study is performed and shows the robustness of the flow control strategy to the characteristics of the boundary layer developing on the model roof and to the flap length.
17

Ducted Fan Aerodynamics and Modeling, with Applications of Steady and Synthetic Jet Flow Control

Ohanian, Osgar John 17 May 2011 (has links)
Ducted fan vehicles possess a superior ability to maximize payload capacity while minimizing vehicle size. Their ability to both hover and fly at high speed is a key advantage for information-gathering missions, particularly when close proximity to a target is essential. However, the ducted fan's aerodynamic characteristics pose difficulties for stable vehicle flight and therefore require complex control algorithms. In particular, they exhibit a large nose-up pitching moment during wind gusts and when transitioning from hover to forward flight. Understanding ducted fan aerodynamic behavior and how it can be altered through flow control techniques are the two prime objectives of this work. This dissertation provides a new paradigm for modeling the ducted fan's nonlinear behavior and new methods for changing the duct aerodynamics using active flow control. Steady and piezoelectric synthetic jet blowing are employed in the flow control concepts and are compared. The new aerodynamic model captures the nonlinear characteristics of the force, moment, and power data for a ducted fan, while representing these terms in a set of simple equations. The model attains excellent agreement with current and legacy experimental data using twelve non-dimensional constants. Synthetic jet actuators (SJA) have potential for use in flow control applications in UAVs with limited size, weight, and power budgets. Piezoelectric SJAs for a ducted fan vehicle were developed through two rounds of experimental designs. The final SJA design attained peak jet velocities in the range of 225 ft/sec (69 m/s) for a 0.03â x 0.80â rectangular slot. To reduce the magnitude of the nose-up pitching moment in cross-winds, two flow control concepts were explored: flow separation control at the duct lip, and flow turning at the duct trailing edge using a CoandÄ surface. Both concepts were experimentally proven to be successful. Synthetic jets and steady jets were capable of modifying the ducted fan flow to reduce pitching moment, but some cases required high values of steady blowing to create significant responses. Triggering leading edge separation on the duct lip was one application where synthetic jets showed comparable performance to steady jets operating at a blowing coefficient an order of magnitude higher. / Ph. D.
18

Dynamics and Stability of Multiple Jets in Geophysical Flows

Sinha, Anirban January 2013 (has links) (PDF)
The effect of rotation on the stability of multiple jets in planetary atmospheres is system- atically investigated. Typically in Jovian planetary atmospheres, multiple zonal jets have been observed and their morphology has been systematically studied. The formation of jets has always been viewed as a nonlinear problem where most work has followed from the ideas of potential vorticity (PV) homogenization or turbulent mixing on a β-plane. In our present work, we have aimed to look at the linear stability of multiple jets in a geophysical fluid, and hope to add further insight into the observed jet profiles in β-plane turbulence. In addition, we also study the evolution and life-cycle of these jets as they interact with each other in a non linear fashion. We begin with the linear stability of the \Bickley jet" using the linearized shallow water quasigeostrophic (QG) equations. We have included a finite deformation radius in our calculations to partially mimic the effects of compressibility. A family of synthetically generated velocity profiles with east-west jets are then studied. In particular, a variety of flow configurations with two jets have been considered with a parameter sweep across jet separation, relative jet strength and thickness. As a broad observation, it is noted that an asymmetric east-west jet profile with a stronger and sharper eastward jet is the most stable of all the profiles considered, and a finite deformation radius further stabilizes such profiles. More realistic jet profiles have also been considered and the role of a finite deformation radius in stabilizing such jets is elucidated. We also examined the nonlinear evolution of multiple jets in a periodic domain and in a channel geometry, as we undertake freely decaying long time simulations of the governing QG equation. As per the \Selective Decay" principle we observe that arbitrary initial conditions approach the flow configuration of the prescribed \suitable end states". In addition, we have shown how a finite deformation length scale modifies these \suitable end states". As a broad observation, we have noted that a linearly unstable jet flow configuration, in the presence of β, breaks down into turbulence and reforms into a more asymmetric jet profile with a stronger and sharper eastward jet. The inclusion of a finite deformation length scale in our calculations, is observed to suppress such jet formation. Similar numerical experiments have been performed in a channel and the results have been compared. Chiefly, for the end states, the nature of the observed jet asymmetry is reversed, i.e., the westward jets are observed to be stronger in a channel.

Page generated in 0.0518 seconds