Spelling suggestions: "subject:"número dde nusselt"" "subject:"número dee nusselt""
1 |
Cálculo simplificado do número de Nusselt em escoamentos laminares de fluidos não-Newtonianos no interior de condutas com temperatura de parede constanteSilva, Andresa Baptista da January 2012 (has links)
Tese de mestrado integrado. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 2012
|
2 |
Cálculo simplificado do coeficiente de atrito e do número de Nusselt em escoamentos laminares de fluidos não-Newtonianos em condutas circularesCruz, Diogo Fernando Alves da January 2010 (has links)
Tese de mestrado integrado. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 2010
|
3 |
Técnica de transformada integral generalizada no desenvolvimento simultâneo dos perfis de velocidade e temperatura em escoamento laminar em dutos de geometria simplesJoão Batista Campos Silva 01 May 1990 (has links)
A técnica de transformada integral generalizada é utilizada para a obtenção de soluções analíticas do problema de convecção forçada em regime laminar, na região de entrada de dutos de geometria simples, tais como canais de placas paralelas e dutos circulares. Nessa região as camadas limites hidrodinâmica e térmica estão se desenvolvendo simultaneamente. O fluido é considerado como newtoniano e suas propriedades físicas como constantes. São utilizadas distribuições de velocidades longitudinais na forma analítica, as quais estão disponíveis na literatura e foram obtidas por métodos de linearização da equação de qualidade de movimento na direção axial. A partir da distribuição de velocidade axial obtém-se a distribuição de velocidade normal e analisa-se a influência desta velocidade sobre os parâmetros de transferência de calor: temperatura média de mistura e números de Nusselt local e médio. Analisa-se também a influência de dois perfis de velocidades diferentes sobre os resultados. Obtém-se resultados numéricos para a temperatura média de mistura e números de Nusselt local e médio considerando-se a geometria de um canal de placas planas paralelas, resolvendo-se um sistema completo de equações diferenciais ordinárias acopladas, para vários números de Prandtl. Implementam-se também, soluções aproximadas para um cálculo mais rápido dos resultados, verificando-se a precisão de tais soluções. Quando possível os resultados são comparados com resultados existentes na literatura.
|
4 |
Análise do efeito da conicidade dos furos do piccolo tubo na troca de calor com o lábio da entrada de ar.Luis Gustavo D'Andrea Demétrio Corrêa 12 November 2009 (has links)
Os sistemas de proteção contra gelo são comumente utilizados na aviação. O piccolo tubo, que é um dispositivo com vários furos por onde passam os jatos de ar quente que aquecem as superfícies a serem protegidas, é o mais utilizado. Dependendo do processo de manufatura, os furos podem variar desde um formato cilíndrico até um formato cônico. O objetivo deste trabalho foi analisar a influência da conicidade destes furos na transferência de calor com o lábio da entrada de ar. Os resultados mostraram que o impacto é mínimo. Para tal análise, foram utilizados tanto programas de geração de malha (ICEM), quanto de mecânica de fluidos computacional - (FLUENT). O modelo térmico foi validado com a vasta literatura disponível, que inclui tanto dados experimentais, quanto simulações que também utilizaram mecânica dos fluidos computacional.
|
5 |
Análise das características de operação e desempenho de micro jatos sintéticosEsteves, Fernanda Munhoz 27 November 2012 (has links)
Submitted by Maicon Juliano Schmidt (maicons) on 2015-03-20T19:50:03Z
No. of bitstreams: 1
000002F2.pdf: 1101205 bytes, checksum: 35ea0ac880e5841836ff1b5e64d2f9ff (MD5) / Made available in DSpace on 2015-03-20T19:50:04Z (GMT). No. of bitstreams: 1
000002F2.pdf: 1101205 bytes, checksum: 35ea0ac880e5841836ff1b5e64d2f9ff (MD5)
Previous issue date: 2012-11-27 / CNPQ – Conselho Nacional de Desenvolvimento Científico e Tecnológico / Componentes eletrônicos estão cada vez mais potentes, necessitando de dissipações térmicas maiores. Os ventiladores atuais, conhecidos comercialmente como "coolers", estão se tornando ineficientes para esta evolução por dependerem de uma maior vazão para atender a demanda de calor dissipado, o que também causa aumento no seu ruído. Como uma alternativa para aprimorar a troca de calor, estudam-se (micro) jatos sintéticos. Estes são produzidos através de uma cavidade selada por uma membrana oscilatória e uma placa com um orifício. A movimentação periódica da membrana produz um jato com valor positivo de quantidade de movimento, que pode ser direcionado para o resfriamento de um dispositivo eletrônico.Para análise térmica, um modelo numérico do dispositivo de refrigeração foi construído em ANSYS CFX 12.0. Variações nos números de Reynolds e Strouhal dos jatos sintéticos e posição da região aquecida na superfície de interesse foram realizadas e seu efeito no desempenho térmico analisado. Os resultados foram comparados a um escoamento convencional de mesma geometria em regime permanente e submetido à mesma vazão mássica média induzida por cada jato sintético. Para a configuração testada, observou-se que os (micro) jatos sintéticos podem fornecer um fluxo de ar mais direcionado para os "hotspots" com maior necessidade de resfriamento. Os resultados encontrados indicam um aumento de número de Nusselt até 122% em jatos sintéticos comparados aos escoamentos contínuos. Logo, confirmam o maior desempenho térmico do jato sintético em relação ao método convencional equivalente e justificam a necessidade de investigações adicionais nesta área. Isto indica que os jatos sintéticos podem ser personalizados ou direcionados especificamente para atender a demanda de resfriamento do problema de interesse. / The rising power consumption of electronic components requires higher and higher thermal dissipation. Current fan systems, commercially known as "coolers", are becoming ineffective to cope with this demand since their performance is dependent on the volumetric flow rate of the driving fan, which becomes more wasteful and noisy. An alternative to improve the heat exchange of current systems is the application of (micro) synthetic jets. These are produced by the oscillations in a cavity bounded by a membrane and a plate with an orifice. Membrane actuation produces a net forward momentum jet through the orifice, which can be applied to cool an electronic device. For this analysis, a numerical model of the cooling device was built on ANSYS CFX 12.0. Variations in jet Reynolds and Strouhal numbers and positioning of the heated region of interest were made and their effect on thermal performance analyzed. Results were compared to a conventional flow with the same geometry but subjected to a single-fan providing steady flow with the same average mass flow rate induced by each synthetic jet. For the configurations tested, it was found that (micro) synthetic jets may provide more directed air flow for "hotspots" with the greatest need of cooling. The results indicate a thermal performance up to 122% higher compared to their equivalent conventional cooling case. This confirmation of the higher thermal performance of synthetic jets relative to a convencional method and justifies the need for the current and additional investigations in this area. Results also indicate that synthetic jets can be customized and specifically directed to meet the cooling demand of the problem in question.
|
6 |
Caracterização fluidodinâmica e térmica de jatos sintéticosLehnen, Matheus Vicenzo 05 1900 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2015-07-08T14:34:31Z
No. of bitstreams: 1
Matheus Vicenzo Lehnen.pdf: 7507080 bytes, checksum: 1036a30adcb3840ea0e5fcb545f29987 (MD5) / Made available in DSpace on 2015-07-08T14:34:31Z (GMT). No. of bitstreams: 1
Matheus Vicenzo Lehnen.pdf: 7507080 bytes, checksum: 1036a30adcb3840ea0e5fcb545f29987 (MD5)
Previous issue date: 2012-05 / Milton Valente / Nos dias atuais, os componentes eletrônicos estão cada vez mais potentes e com mais dispositivos integrados e há a necessidade de uma dissipação térmica mais eficiente. Os atuais ventiladores e dissipadores de calor usando ar como fluido de trabalho estão ficando obsoletos. Por este motivo, torna-se necessário o desenvolvimento de um sistema mais eficiente. Existem três técnicas principais em estudo nesta área: resfriamento líquido, trocadores de calor compostos por microcanais e jatos sintéticos como transmissores de quantidade de movimento ao fluido. Entretanto, a análise em pequena escala encontra limitações experimentais de modo que uma abordagem por Dinamica de Fluidos Computacional (Computational Fluid Dynamics – CFD) é mais recomendável para caracterizar e validar o desempenho dos jatos sintéticos. O objetivo principal deste trabalho é realizar uma análise fluidodinâmica de jatos sintéticos e caracterizar a troca térmica de jatos sintéticos colidindo sobre uma superfície aquecida, através de simulação numérica. A flexibilidade da aproximação numérica também possibilita o estudo da sensibilidade do design a vários parâmetros físicos e geométricos, tais como o número de Reynolds, a frequência do atuador, o número de Prandtl, a distância da placa aquecida ao orifício da cavidade, o formato do orifício do atuador, a profundidade da cavidade e a espessura da placa do orifício. Os resultados caracterizam o efeito dos parâmetros físicos e geométricos de interesse na formação do jato e na dissipação térmica. O conhecimento agregado neste estudo permitiu determinar uma correlação para o número de Nusselt em função da frequência adimensional – o número de Strouhal – do número de Reynolds, do número de Prandtl e da distância adimensional da superfície aquecida ao orifício. Assim, é possível prever o comportamento de tais jatos sobre a superfície aquecida, e assim contribuir para os atuais estudos nesta linha de pesquisa. Os resultados apresentados tem então aplicação em estudos posteriores, de maior complexidade de design com atuadores combinados com trocadores de calor de aletas, coolers e micro canais, resultando em avanços na área de resfriamento de microchips. / Current electronic components are becoming ever more potent and densly integrated, which requires further increases in the efficiency of heat dissipation. With current fan-based heat dissipation techniques with air as the working fluid becoming outdated, there is a pressing need to develop more eficient methods to cope with demand. So far, three techniques have been the primary focus of studies in this area: liquid cooling, microchannel heat exchangers and synthetic jets used to promote increased momentum transfer. Analysis of such devices at the small physical scale of electronic components is somewhat problematic in experimental form so that a computational fluid dynamics (CFD) approach is recommended. The main objective of this study is thus to utilize a CFD approach to establish the performance characteristics of a synthetic jet impacting against a heated surface. The flexibility of a numerical approach also allows the examination of the sensibility of the design with respect to several physycal and geometric parameters such as Reynolds number, pulsing frequency, jet orifice shape and size, cavity size and distance between the heated surface and the device. Such results, provide insight in the effect of physical and geometric parameters in the jet formation and heat dissipation. The combined knowledge of this study allowed the development of a practical correlation for the Nusselt number based on the Strouhal number (normalized pulsing frequency), Reynolds number, Prandtl number and the distance between the heated surface and the synthetic jet. This result allows improved predictions of a jet impacting against a heated surface and, consequently, adds an important contribution to other studies in this area. It is expected that the results presented here will be the starting point for further work, in which increasingly complex geometries such as actuators combined with heat exchangers equipped with fins, coolers or microchannels are examined to further improve the knowledge in the field of electronic cooling.
|
7 |
Resfriamento de componentes eletrônicos por jatos sintéticos tangenciaisTrisch, Marino 22 June 2015 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2016-02-04T15:21:28Z
No. of bitstreams: 1
Marino Trisch_.pdf: 3535397 bytes, checksum: 4cc7a6dc219d9c91a6de57725e4515d1 (MD5) / Made available in DSpace on 2016-02-04T15:21:28Z (GMT). No. of bitstreams: 1
Marino Trisch_.pdf: 3535397 bytes, checksum: 4cc7a6dc219d9c91a6de57725e4515d1 (MD5)
Previous issue date: 2015-06-22 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho apresenta um estudo experimental relacionado ao resfriamento de dispositivos eletrônicos utilizando jatos sintéticos direcionados de modo que o jato flua tangencialmente à superfície aquecida, utilizando para isso uma bancada experimental especialmente desenvolvida. Para o desenvolvimento deste trabalho foram analisados outros estudos relacionados ao assunto, simulados e experimentais, utilizando neste caso um alto-falante como membrana montada em conjunto com a estrutura da bancada para formar a câmara e consequentemente o gerador de jatos sintéticos. O jato sintético gerado irá resfriar um elemento de aquecimento que simula o funcionamento de um dispositivo eletrônico, posicionado tangencialmente em diversas posições de distância em relação à saída do jato. Os procedimentos de teste de resfriamento foram realizados na bancada experimental em diversos modos de funcionamento do elemento de aquecimento, utilizando temperatura média de 80 °C semelhante à temperatura máxima de trabalho de dispositivos eletrônicos. Para a geração do jato sintético foram aplicados sinais senoidais em frequências de pulsação entre 20 e 120 Hz e com amplitude de aproximadamente 7,52 V_p, que resulta em 20 Wrms de potência no gerador de jatos sintéticos. Nos testes utilizando potência fixa do elemento de aquecimento, a temperatura no elemento de aquecimento é monitorada. Em outro modo de teste, foi mantida uma temperatura constante e monitorada a potência máxima correspondente dissipada no elemento de aquecimento. Por fim, também foi realizado comparativo entre resfriamento eletrônico utilizando jatos sintéticos e método tradicional com a utilização de ventiladores, onde são utilizados três diferentes tamanhos de coolers acoplados à bancada experimental e arrefecendo o mesmo elemento de aquecimento, verificando e comparando velocidades e rendimento entre os métodos de resfriamento. / This paper presents an experimental study related to the cooling of electronic devices using synthetic jets directed so that the jet flows tangentially to the heated surface. A custom-built experimental test bench especially developed based on other studies related to the subject. In this case, a speaker was used as a membrane and installed in a cavity in the test bench to form the synthetic jet generator. The synthetic jet cools a heating element that simulates the operation of an electronic device, positioned tangentially at various distance in relation to the exit plane of the synthetic jet. Cooling test procedures were performed in the custom-built experimental test bench in various operation modes of the heating element, using an average temperature of 80 ° C which is similar to the operating temperature of electronic devices. To generate the synthetic jet, sinusoidal input signals were applied with frequencies between 20 and 120 Hz and with amplitude of approximately 7.52 Vp which resulted in 20 Wrms power consumed by generator. In tests using a fixed power dissipated by the heating element, the temperature drop is monitored in the heating element. In the other test mode, the temperature on the heating element was set at a constant value the maximum power dissipated in the heating element was measured. Finally, comparisons were also performed between the cooling performance of synthetic jets and the conventional method with the use of three different coolers sizes. The same tests were performed on the same heating element and the corresponding velocities and cooling performance between the two methods were compared.
|
8 |
Análise experimental e numérica de convecção forçada em arranjo de obstáculos dentro de canalSouza, Edilson Guimarães de [UNESP] 20 December 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:38Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-12-20Bitstream added on 2014-06-13T19:47:44Z : No. of bitstreams: 1
souza_eg_me_ilha.pdf: 959550 bytes, checksum: b4784dbcc883b1be2d0c6b7cce83f54b (MD5) / Fundação de Ensino Pesquisa e Extensão de Ilha Solteira (FEPISA) / O objetivo deste trabalho é a análise numérica e experimental de escoamento viscoso, incompressível, permanente, com transferência de calor, em um canal estreito contendo um arranjo de obstáculos retangulares. A análise experimental envolveu determinação de coeficiente de transferência de calor médio bem como o número de Nusselt médio e medidas de temperatura em esteira térmica para comparação com os resultados obtidos por simulação numérica. Para a análise numérica usamos o programa comercial de mecânica dos fluidos e transferência de calor computacional ICEPAK®. Verificamos que quanto mais adentro o obstáculo estiver no arranjo maior é a transferência de calor por convecção forçada. Determinamos coeficientes de transferência de calor médio e número de Nusselt médio (com incerteza entre 6 e 15%) e verificamos que o efeito da posição diminui à medida que a velocidade aumenta. Concluímos também que ambos os modelos de turbulência utilizados, k-ε padrão e k-ε RNG, foram incapazes de predizer o efeito da posição apropriadamente. Entretanto, o modelo k-ε RNG apresentou melhor comportamento, pois o seu uso resultou em soluções com valores de temperatura intermediários aos experimentais / The purpose of this work is the study of the numerical and experimental viscous incompressible steady flow with heat transfer into a narrow channel containing a rectangular array of obstacles. The experimental approach involves determining the coefficient of heat transfer and temperature measurements in thermal wake for comparison with the results obtained in numerical simulations. For the numerical analysis we use the commercial program of fluid mechanics and heat transfer computational ICEPAK™. We confirmed that in the last lines of the array the biggest is the heat transfer by forced convection. We determined the average heat transfer coefficients (with uncertainty between 6 and 15%) and found that the effect of the position decreases as flow speed increases. We use in the simulations the k-ε turbulence model and the k-ε RNG turbulence model. We conclude that both turbulence models used were unable to predict the effect of the position properly. However, the k-ε RNG model showed better behavior. The numerical temperatures with this model were consistent to the experimental temperature
|
Page generated in 0.0639 seconds