Spelling suggestions: "subject:"système d'optimality"" "subject:"système d'l'optimalité""
1 |
Assimilation de données et analyse de sensibilité. Une application à la circulation océaniqueNgodock, Hans Emmanuel 25 March 1996 (has links) (PDF)
Le travail mené dans cette thèse porte sur l'étude "à posteriori" de l'assimilation variationnelle de données. Il s'agit d'une démarche de faisabilité pour la mise au point des outils permettant de faire une analyse diagnostique (qualitative et quantitative) du processus d'assimilation variationnelle, notamment en ce qui concerne l'influence du bruit des observations sur le processus d'assimilation ainsi que sa propagation sur les champs reconstitués (nous sommes alors amenés à faire une étude de sensibilité), et l'influence de la configuration spatio-temporelle des observations sur le processus d'assimilation. L'application usuelle des équations adjointes pour l'analyse de sensibilité est revisée, car dans le contexte de l'assimilation variationnelle, nous avons montré par un exemple simple qu'il faut s'y prendre différemment. Nous proposons alors une méthode pour mener correctement cette analyse de sensibilité. Cette méthode est basée sur l'utilisation des équations adjointes au second ordre, obtenues en prenant l'adjoint du système d'optimalité. La sensibilité en est déduite par inversion du Hessien de la fonction coût via la minimisation d'une fonctionnelle quadratique. L'application est faite sur un modèle de circulation générale océanique de type quasi-géostrophique, et nous faisons aussi l'étude de l'existence et l'unicité de la solution de l'équation adjointe au second ordre du modèle considéré, pour justifier l'utilisation du Hessien et l'applicabilité de notre méthode. Nous étudions aussi l'influence de la configuration spatio-temporelle des observations sur le processus d'assimilation au travers du Hessien (à l'optimum) dont les éléments propres varient lorsqu'on fait varier la configuration. Enfin, nous étudions la prédicibilité du système d'optimalité.
|
2 |
Assimilation de données et identification de paramètres : une application en hydrologieNgnepieba, Pierre Désiré 13 December 2001 (has links) (PDF)
La détermination de certains paramètres hydrodynamiques dans les modèles d'écoulement en zone non-saturée (et plus généralement dans certains modèles géophysiques) requiert l'utilisation d'un modèle et de données d'observations. Le but de ce travail est de proposer une méthode d'assimilation variationnelle de données permettant de reconstituer ces paramètres en tenant compte des observations et le modèle. La méthode proposée est fondée sur les techniques de contrôle optimal. Le travail mené dans cette étude porte sur l'identification de paramètres sur le modèle de Richards monodimensionnel ainsi que sa mise en oeuvre numérique. Au préalable, une investigation de la physique liée à notre problématique est explorée. Les données à assimiler sont les mesures d'infiltration cumulée et le vecteur de contrôle choisi est constitué de la condition initiale, des conditions aux limites et des paramètres hydrodynamiques. C'est ainsi que suivant certaines distributions des observations (infiltration cumulée observée), le paramètre de contrôle est reconstitué. Cette phase est suivie par une étude a posteriori basée sur les études au second ordre qui permettent d'estimer l'erreur de l'identification, l'influence de la configuration temporelle des observations sur la qualité de l'identification ainsi qu'une bonne compréhension du processus de minimisation. La dérivation automatique à l'aide du logiciel de différentiation automatique ODYSSEE est utilisée pour déduire les informations du premier et du second ordre. Enfin, en se servant des études au second ordre réalisées, nous appliquons l'algorithme de Newton au système d'optimalité.
|
3 |
Contrôle optimal de quelques phénomènes de diffusion en domaines pollués / Pointwise optimal control for some diffusion phenomena in polluted areaMahoui, Sihem 01 July 2018 (has links)
Dans ce travail, on s'intéresse à l'analyse mathématique et au contrôle optimal pour des problèmes de diffusion relevant de certains domaines comme l'écologie ou l'environnement et comportant des termes de pollution inconnus en général. De plus, on souhaite agir sur le système en un seul point du domaine considéré pour des raisons de coût. La modélisation de ces problèmes se traduit généralement par un système de type parabolique avec donnée manquante (initiale ou aux limites) représentant la pollution, et où l'on introduit une fonction de contrôle de ce système. La méthode suivie pour résoudre ces problèmes est celle du contrôle à moindres regrets développée par J.-L. Lions et bien adaptée aux problèmes à données manquantes.Plus précisément, on est concerné par des problèmes de type parabolique qui décrivent la diffusion d'un fluide (eau) contaminé dans un domaine (une lagune ou un estuaire) par une pollution ayant son origine sur une partie du bord. De plus, on considère que la fonction source (le contrôle) est localisée en un point, c'est ce qu'on appelle le contrôle ponctuel. On cherche alors le (ou les) contrôle(s) qui peuvent améliorer la situation au lieu de la laisser à l'abandon (sans contrôle).Les solutions ne sont pas des fonctions régulières et ne peuvent être considérées qu'au sens faible. Deux méthodes sont utilisées: la première est la méthode de transposition de Lions-Magenes, détaillée au chapitre 3 de la thèse, et la deuxième méthode consiste à régulariser la masse de Dirac (le support du contrôle est un point) présentée au chapitre4. Pour les deux méthodes, on montre l'existence d'une solution faible et on établit un système d'optimalité singulier (SOS) du contrôle ponctuel à moindres regrets.Un dernier chapitre est consacré aux schémas numériques associés au problème de contrôle ponctuel à moindres regrets, où l'on obtient des estimations d'erreur par la méthode des éléments finis. / In this thesis, we are interested in mathematical analysis and optimal control of diffusion problems where there are pollution terms. In addition, we want to act on the system in a single point of the domain for cost reasons. The systems being studied are parabolic with missing (initial or boundary) data representing pollution, where we introduce a control function. The method of low-regret control of J.-L. Lions, used here for the first time to the pointwise control, seems to be well suited. We then look for the control which can improve the situation instead of doing nothing (no control).Solutions are not regular functions and can only be considered in the weak sense. Two methods are used here: the first one is the method of transposition of Lions-Magenes, detailed in Chapter 3 of the thesis, and the second method consists in regularizing the Dirac mass, presented in chapter 4. Each one of the two methods offers a new point of view. In particular, the functional spaces where the existence of a solution is obtained are different. For both methods, however, a singular optimality system is established for the low-regret pointwise control.A final chapter is devoted to the numerical schemes associated to the low-regret pointwise optimal control, where we obtain error estimates using finite elements method (FEM).
|
Page generated in 0.0503 seconds