• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de différents aspects des EDP hyperboliques : persistance d'onde de choc dans la dynamique des fluides compressibles, modélisation du trafic routier, stabilité des lois de conservation scalaires

Mercier, Magali 07 December 2009 (has links) (PDF)
On étudie dans ce travail des systèmes de lois de conservation hyperboliques. La première partie étudie le temps d'existence des solutions régulières et régulières par morceaux de la dynamique des fluides compressibles. Après avoir présenté l'état de l'art en matière de solutions régulières, on montre une extension d'un théorème de Grassin à des gaz de Van der Waals. On étudie ensuite les solutions ondes de chocs : on poursuit l'approche de T. T. Li pour estimer leur temps d'existence dans le cas isentropique à symétrie sphérique, et l'approche de Whitham afin d'obtenir une équation approchée vérifiée par la surface de discontinuité. Dans une deuxième partie, motivée par la modélisation d'un rond-point en trafic routier, on étudie une extension multi-classe du modèle macroscopique de Lighthill-Whitham-Richards sur une route infinie avec des jonctions. On différencie les véhicules selon leur origine et leur destination et on introduit des conditions aux bords adaptées au niveau des jonctions. On obtient existence et unicité d'une solution au problème de Riemann pour ce modèle. Des simulations numériques attestent que les solutions obtenues existent en temps long. On aborde enfin le problème de Cauchy par la méthode de front tracking. La dernière partie concerne les lois de conservation scalaires. La première question abordée est le contrôle de la variation totale de la solution et la stabilité des solutions faibles entropiques par rapport au flux et à la source. Ce résultat nous permet d'étudier des équations avec flux non-local. Une fois établi leur caractère bien posé, on montre la Gâteaux-différentiabilité du semi-groupe obtenu par rapport aux conditions initiales.
2

Étude de différents aspects des EDP hyperboliques : persistance d'onde de choc dans la dynamique des fluides compressibles, modélisation du trafic routier, stabilité des lois de conservation scalaires.

Lécureux-Mercier, Magali 07 December 2009 (has links) (PDF)
On étudie dans ce travail des systèmes de lois de conservation hyperboliques. La première partie étudie le temps d'existence des solutions régulières et régulières par morceaux de la dynamique des fluides compressibles. Après avoir présenté l'état de l'art en matière de solutions régulières, on montre une extension d'un théorème de Grassin à des gaz de Van der Waals. On étudie ensuite les solutions ondes de chocs : on poursuit l'approche de T. T. Li pour estimer leur temps d'existence dans le cas isentropique à symétrie sphérique, et l'approche de Whitham afin d'obtenir une équation approchée vérifiée par la surface de discontinuité. Dans une deuxième partie, motivée par la modélisation d'un rond-point en trafic routier, on étudie une extension multi-classe du modèle macroscopique de Lighthill-Whitham-Richards sur une route infinie avec des jonctions. On différencie les véhicules selon leur origine et leur destination et on introduit des conditions aux bord adaptées au niveau des jonctions. On obtient existence et unicité d'une solution au problème de Riemann pour ce modèle. Des simulations numériques attestent que les solutions obtenues existent en temps long. On aborde enfin le problème de Cauchy par la méthode de front tracking. La dernière partie concerne les lois de conservation scalaires. La première question abordée est le contrôle de la variation totale de la solution et la stabilité des solutions faibles entropiques par rapport au flux et à la source. Ce résultat nous permet d'étudier des équations avec flux non-local. Une fois établi leur caractère bien posé, on montre la Gâteaux-différentiabilité du semi-groupe obtenu par rapport aux conditions initiales.
3

Contributions à la commande prédictive des systèmes de lois de conservation

Pham, Van thang 06 September 2012 (has links) (PDF)
La Commande prédictive ou Commande Optimale à Horizon Glissant (COHG) devient de plus en plus populaire dans de nombreuses applications pratiques en raison de ses avantages importants tels que la stabilisation et la prise en compte des contraintes. Elle a été bien étudiée pour des systèmes en dimension finie même dans le cas non linéaire. Cependant, son extension aux systèmes en dimension infinie n'a pas retenu beaucoup d'attention de la part des chercheurs. Ce travail de thèse apporte des contributions à l'application de cette approche aux systèmes de lois de conservation. Nous présentons tout d'abord une preuve de stabilité complète de la COHG pour certaines classes de systèmes en dimension infinie. Ce résultat est ensuite utilisé pour les systèmes hyperboliques 2x2 commandés aux frontières et appliqué à un problème de contrôle de canal d'irrigation. Nous proposons aussi l'extension de cette stratégie au cas de réseaux de systèmes hyperboliques 2x2 en cascade avec une application à un ensemble de canaux d'irrigation connectés. Nous étudions également les avantages de la COHG dans le contexte des systèmes non linéaires et semi-linéaires notamment vis-à-vis des chocs. Toutes les analyses théoriques sont validées par simulation afin d'illustrer l'efficacité de l'approche proposée.
4

Étude de différents aspects des EDP hyperboliques : persistance d’onde de choc dans la dynamique des fluides compressibles, modélisation du trafic routier, stabilité des lois de conservation scalaires / Some aspects of hyperbolic PDE : persistence of shock waves in compressible fluid dynamics, traffic flow modelling, stability of scalar balance laws and applications

Mercier, Magali 07 December 2009 (has links)
On étudie dans ce travail des systèmes de lois de conservation hyperboliques. La première partie étudie le temps d'existence des solutions régulières et régulières par morceaux de la dynamique des fluides compressibles. Après avoir présenté l'état de l'art en matière de solutions régulières, on montre une extension d'un théorème de Grassin à des gaz de Van der Waals. On étudie ensuite les solutions ondes de chocs : on poursuit l'approche de T. T. Li pour estimer leur temps d'existence dans le cas isentropique à symétrie sphérique, et l'approche de Whitham afin d'obtenir une équation approchée vérifiée par la surface de discontinuité. Dans une deuxième partie, motivée par la modélisation d'un rond-point en trafic routier, on étudie une extension multi-classe du modèle macroscopique de Lighthill-Whitham-Richards sur une route infinie avec des jonctions. On différencie les véhicules selon leur origine et leur destination et on introduit des conditions aux bords adaptées au niveau des jonctions. On obtient existence et unicité d'une solution au problème de Riemann pour ce modèle. Des simulations numériques attestent que les solutions obtenues existent en temps long. On aborde enfin le problème de Cauchy par la méthode de front tracking. La dernière partie concerne les lois de conservation scalaires. La première question abordée est le contrôle de la variation totale de la solution et la stabilité des solutions faibles entropiques par rapport au flux et à la source. Ce résultat nous permet d'étudier des équations avec flux non-local. Une fois établi leur caractère bien posé, on montre la Gâteaux-différentiabilité du semi-groupe obtenu par rapport aux conditions initiales. / In this work, we study hyperbolic systems of balance laws. The first part is devoted to compressible fluid dynamics, and particularly to the lifespan of smooth or piecewise smooth solutions. After presenting the state of art, we show an extension to more general gases of a theorem by Grassin.We also study shock waves solutions: first, we extend T. T. Li's approach to estimate the time of existence in the isentropic spherical case; second, we develop Whitham's ideas to obtain an approximated equation satisfied by the discontinuity surface. In the second part, we set up a new model for a roundabout. This leads us to study a multi-class extension of the macroscopic Lighthill-Whitham-Richards' model. We study the traffic on an infinite road, with some points of junction. We distinguish vehicles according to their origin and destination and add some boundary conditions at the junctions. We obtain existence and uniqueness of a weak entropy solution for the Riemann problem. As a complement, we provide numerical simulations that exhibit solutions with a long time of existence. Finally, the Cauchy problem is tackled by the front tracking method. In the last part, we are interested in scalar hyperbolic balance laws. The first question addressed is the control of the total variation and the stability of entropy solutions with respect to flow and source. With this result, we can study equations with non-local flow, which do not fit into the framework of classical theorems. We show here that these kinds of equations are well posed and we show the Gâteaux-differentiability with respect to initial conditions, which is important to characterize maxima or minima of a given cost functional.
5

Contributions à la commande prédictive des systèmes de lois de conservation / Contribution to predictive control for systems of conservation laws

Pham, Van Thang 06 September 2012 (has links)
La Commande prédictive ou Commande Optimale à Horizon Glissant (COHG) devient de plus en plus populaire dans de nombreuses applications pratiques en raison de ses avantages importants tels que la stabilisation et la prise en compte des contraintes. Elle a été bien étudiée pour des systèmes en dimension finie même dans le cas non linéaire. Cependant, son extension aux systèmes en dimension infinie n'a pas retenu beaucoup d'attention de la part des chercheurs. Ce travail de thèse apporte des contributions à l'application de cette approche aux systèmes de lois de conservation. Nous présentons tout d'abord une preuve de stabilité complète de la COHG pour certaines classes de systèmes en dimension infinie. Ce résultat est ensuite utilisé pour les systèmes hyperboliques 2x2 commandés aux frontières et appliqué à un problème de contrôle de canal d'irrigation. Nous proposons aussi l'extension de cette stratégie au cas de réseaux de systèmes hyperboliques 2x2 en cascade avec une application à un ensemble de canaux d'irrigation connectés. Nous étudions également les avantages de la COHG dans le contexte des systèmes non linéaires et semi-linéaires notamment vis-à-vis des chocs. Toutes les analyses théoriques sont validées par simulation afin d'illustrer l'efficacité de l'approche proposée. / The predictive control or Receding Horizon Optimal Control (RHOC) is becoming increasingly popular in many practical applications due to its significant advantages such as the stabilization and constraints handling. It has been well studied for finite dimensional systems even in the nonlinear case. However, its extension to infinite dimensional systems has not received much attention from researchers. This thesis proposes contributions on the application of this approach to systems of conservation laws. We present a complete proof of stability of RHOC for some classes of infinite dimensional systems. This result is then used for 2x2 hyperbolic systems with boundary control, and applied to an irrigation canal. We also propose the extension of this strategy to networks of cascaded 2x2 hyperbolic systems with an application to a set of connected irrigation canals. Furthermore, we study the benefits of RHOC in the context of nonlinear and semi-linear systems in particular with respect to the problem of shocks. All theoretical analyzes are validated by simulation in order to illustrate the effectiveness of the proposed approach.

Page generated in 0.195 seconds