181 |
Fuzzy rule base identification via singular value decomposition. / CUHK electronic theses & dissertations collection / Digital dissertation consortiumJanuary 1999 (has links)
by Stephen Chi-tin Yang. / "Sept. 28, 1999." / Thesis (Ph.D.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (p. 158-163). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
182 |
Multigrid methods for parameter identification in heat conduction systems.January 2001 (has links)
Chan Kai Yam. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 80-82). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Parameter Identification in Heat Conduction Systems --- p.1 / Chapter 1.2 --- Inverse Problems --- p.3 / Chapter 1.3 --- Challenges in Inverse Problems --- p.6 / Chapter 2 --- Tools in Parameter Identification --- p.9 / Chapter 2.1 --- Output Least Squares Method --- p.10 / Chapter 2.2 --- Tikhonov Regularization --- p.11 / Chapter 2.3 --- Our Approach --- p.14 / Chapter 3 --- Numerical Implementations --- p.20 / Chapter 3.1 --- Finite Element Discretization and Its Convergence --- p.20 / Chapter 3.2 --- Steepest Descent Method --- p.22 / Chapter 3.3 --- Multigrid Techniques --- p.26 / Chapter 4 --- Numerical Experiments --- p.29 / Chapter 4.1 --- One Dimensional Examples --- p.30 / Chapter 4.1.1 --- Selection of mk --- p.31 / Chapter 4.1.2 --- Selection of nk --- p.34 / Chapter 4.1.3 --- Selection of Number of Levels in the Coarse Grid Correction Step --- p.37 / Chapter 4.1.4 --- Convergence with Different Regularization Pa- rameters γ --- p.39 / Chapter 4.1.5 --- Convergence with Different Initial Guesses --- p.42 / Chapter 4.1.6 --- Comparisons between MG and SG Methods --- p.44 / Chapter 4.1.7 --- Comparisons between MG and RMG Methods --- p.46 / Chapter 4.1.8 --- More Examples --- p.49 / Chapter 4.1.9 --- Coarse Grid Correction in Another Approach --- p.60 / Chapter 4.2 --- Two Dimensional Examples --- p.71 / Chapter 4.3 --- Conclusions --- p.78 / Bibliography --- p.80
|
183 |
A WANFIS Model for Use in System Identification and Structural Control of Civil Engineering StructuresMitchell, Ryan 18 April 2012 (has links)
With the increased deterioration of infrastructure in this country, it has become important to find ways to maintain the strength and integrity of a structure over its design life. Being able to control the amount a structure displaces or vibrates during a seismic event, as well as being able to model this nonlinear behavior, provides a new challenge for structural engineers. This research proposes a wavelet-based adaptive neuro- fuzzy inference system for use in system identification and structural control of civil engineering structures. This algorithm combines aspects of fuzzy logic theory, neural networks, and wavelet transforms to create a new system that effectively reduces the number of sensors needed in a structure to capture its seismic response and the amount of computation time needed to model its nonlinear behavior. The algorithm has been tested for structural control using a three-story building equipped with a magnetorheological damper for system identification, an eight-story building, and a benchmark highway bridge. Each of these examples has been tested using a variety of earthquakes, including the El-Centro, Kobe, Hachinohe, Northridge, and other seismic events.
|
184 |
Manutenção de modelos para controladores preditivos industriaisFrancisco, Denilson de Oliveira January 2017 (has links)
O escopo desta dissertação é o desenvolvimento de uma metodologia para identificar os modelos de canais da matriz dinâmica que estejam degradando o desempenho de controladores preditivos, ou MPC (Model Predictive Control), baseado nas técnicas de auditoria e diagnóstico deste tipo de controlador propostas por BOTELHO et al. (2015) e BOTELHO; TRIERWEILER; FARENZENA (2016) e CLARO (2016). A metodologia desenvolvida contempla dois métodos distintos. O primeiro, chamado método direto compensado, tem como base o método direto de identificação em malha fechada (LJUNG, 1987)e compensa cada saída medida do processo de modo a se reter apenas a contribuição do canal que se deseja identificar. O segundo, chamado método do erro nominal, utiliza a definição de saída nominal do processo, proposta por BOTELHO et al. (2015), como métrica para se quantificar o quão próximo o modelo está do comportamento da planta através da minimização do erro nominal. Os métodos foram aplicados ao sistema de quatro tanques cilíndricos (JOHANSSON, 2000) para dois cenários distintos, sendo o primeiro um sistema 2x2 em fase não mínima contendo um MPC trabalhando com setpoint e o segundo um sistema 4x4 em fase mínima com o MPC atuando por faixas. Para o sistema 2x2, se avaliou a influência da localização do canal discrepante (dentro ou fora da diagonal principal da matriz dinâmica de transferência) na eficácia dos métodos. Para o sistema 4x4, o estudo foi voltado para a eficácia dos métodos frentes a controladores que atuam dentro de limites para as variáveis. Os modelos identificados foram comparados pela capacidade de identificar um modelo que capturasse o zero de transmissão da planta e o RGA dinâmico, par ao sistema 2x2, e pelas respostas degrau e diagrama de Bode para o sistema 4x4. O método direto compensado resultou em baixo erro relativo no valor do zero para a discrepância na diagonal principal da matriz dinâmica e alto valor quando a discrepância se encontrava fora da diagonal principal. O método do erro nominal, por sua vez, foi capaz de identificar um modelo cujo zero de transmissão possuía baixo erro relativo frente ao zero da planta em ambos os cenários. No cenário do controlador atuando por faixas, os métodos propostos obtiveram melhores estimativas dos modelos quando comparados com o método concorrente, uma vez que apresentou alto percentual de aderência das saídas simuladas com as saídas medidas. Em todos os cenários estudados, o método do erro nominal se mostrou capaz de identificar um modelo mais robusto, pois este apresentou RGA dinâmico compatível com a planta em todo o range de frequências analisado. / The objective of this dissertation is to develop a method to identify the model for the channel of the dynamic matrix that are affecting the performance of model predictive controllers (MPC), based on the assessment and diagnosis techniques for this type of controller proposed by BOTELHO et al. (2015) e BOTELHO; TRIERWEILER; FARENZENA (2016) and CLARO (2016). The proposed methodology includes two different methods. The first, called the compensated direct method, is based on the closed-loop direct identification method (LJUNG, 1987) and compensates each process measured output in order to retain only the contribution of the channel being identified. The second, called nominal error method, uses the definition of the process nominal output, proposed by BOTELHO et al. (2015), as a metric to quantify how close the model is to the actual plant behavior by minimizing the nominal error. The proposed methods were applied to the quadruple-tank system (JOHANSSON, 2000) for two distinct scenarios, the first being a nonminimum-phase 2x2 system containing a MPC working with setpoint and the second a minimum-phase 4x4 system with the MPC working by ranges. For the 2x2 system, the influence of the model mismatch location (inside or outside the main diagonal of the dynamic transfer matrix) on the effectiveness of the methods was evaluated. For the 4x4 system, the study was focused on the effectiveness of the methods with controllers that operate within limits for the variables. The identified models were compared by the capability of identifying a model with accurate plant transmission zero and dynamic RGA, for the 2x2 system, and by the step responses and Bode diagram for the 4x4 system. The compensated direct method resulted in low relative error in the value of the transmission zero for the model mismatch located in the main diagonal of the dynamic matrix and high relative error when the mismatch was outside the main diagonal. On the other hand, the nominal error method was able to identify a model whose transmission zero had low relative error against the plant zero in both scenarios. In the scenario of a controller working by range, the proposed methods obtained better estimates of the models when compared to the concurrent method, since it presented a high percentage of adherence of the simulated outputs with the measured outputs. In all the studied scenarios, the nominal error method was able to identify a more robust model, since it presented dynamic RGA compatible with the plant in the entire range of analyzed frequencies.
|
185 |
A system failure detection method -- failure projection methodLou, Xi-Cheng January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1982. / Includes bibliographical references. / by Xi-Cheng Lou. / M.S.
|
186 |
A failure detection system design methodologyChow, Edward Yik January 1981 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Edward Yik Chow. / Sc.D.
|
187 |
Application of system identification to ship maneuveringHwang, Wei-yuan January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 289-293. / by Wei-Yuan Hwang. / Ph.D.
|
188 |
On maximum likelihood identification of state space modelsYared, Khaled Ibrahim January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Khaled I. Yared. / Ph.D.
|
189 |
Identificação do modelo do processo em malha fechada com controlador MPC. / Model identification in closed loop in a process with a MPC control.Pires, Rodrigo Cáo 13 April 2009 (has links)
Este trabalho visa o desenvolvimento de uma metodologia para a re-identificação do modelo usado em controladores preditivos (MPC) desenvolvidos em uma estrutura em duas camadas: uma camada estática que calcula os targets para as variáveis manipuladas e uma dinâmica que implementa os targets para as entradas. Espera-se que esse procedimento de reidenticação seja acionado sempre que for observada uma significativa degradação do modelo de controle do processo. Neste trabalho assume-se que a re-identicação do modelo deve ser realizada em malha fechada. No método aqui proposto, admite-se que o código fonte do programa do controlador preditivo não está disponível, e conseqüentemente, o método proposto não deve requerer qualquer modificação no código fonte. No método aqui proposto, o sinal de excitação é introduzido através dos coeficientes da função objetivo da camada estática que calcula os targets para as entradas. O método proposto é testado por simulação em dois processos diferentes. O primeiro processo é uma coluna de destilação para a qual estão disponíveis vários modelos lineares obtidos em diferentes condições operacionais. O segundo processo aqui estudado é um reator químico não linear que deve ser representado localmente por um modelo linear. / This work aims at the development of a methodology to the re-identification of the model to be used in a MPC, which is developed in a two layers structure: a target calculation layer and a dynamic layer where the targets to the inputs are implemented. It is expected that the reidentification procedure should be started whenever it is observed a significant degradation of the process model. Here, it is assumed that the model re-identification is to be performed in closed-loop. In the method proposed here, it is assumed that the source code of the MPC controller is not available, and consequently, the proposed method should not require any modification the source code. In the method proposed here, the excitation signal is introduced through the coefficients of the objective function of the target calculation layer. The proposed method is tested by simulation in two different processes. The first one is a distillation column where several linear models obtained at different operating conditions are available. The second process studied here is a nonlinear chemical reactor that is locally represented by a linear model.
|
190 |
Determinação de zeros na matriz de transferência de sistemas MIMO baseada em análise de correlação. / Determination of transfer matrix zeros from MIMO systems based on correlation analysis.Leandro Cuenca Massaro 02 June 2014 (has links)
O trabalho tem por objetivo avaliar diferentes métodos para identificar zeros na matriz de transferência de sistemas MIMO e propor um método novo baseado em análise de correlação. Estes métodos são utilizados durante a etapa de pré-identificação, a fim de se obter informações relevantes que possam ser utilizadas para se reduzir o tempo dos experimentos, diminuir a variabilidade dos parâmetros dos modelos e melhorar a eficácia dos modelos remanescentes. Estes métodos são aplicados a sistemas MIMO lineares, com dados coletados em malha aberta e em malha fechada. É avaliado o ganho obtido em relação à capacidade de predição dos modelos, a redução do tempo de identificação e o ganho de desempenho do controlador MPC que utiliza estes modelos. O trabalho conclui que a informação de zeros resulta em melhorias no tempo de identificação e no desempenho do controlador MPC. / This work aims to evaluate different methods to identify zeros in the transfer matrix of MIMO systems and to propose a new method based on correlation analysis. These methods are used during the pre-identification stage in order to identify relevant information that can be used to reduce the duration of the experiment, decrease model parameter variability and improve the accuracy of the remaining models. These methods are applied to MIMO linear systems, with data collected in open and closed-loop. The gains obtained in relation to the predictive ability of the models, the reduction of identification time and the performance gain of the MPC using these models are evaluated. This work concludes that the zero information results in improvements in identification time and in performance gain of the MPC controller.
|
Page generated in 0.1759 seconds