• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 332
  • 136
  • 34
  • 20
  • 14
  • 12
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 651
  • 651
  • 251
  • 152
  • 143
  • 114
  • 100
  • 96
  • 95
  • 83
  • 78
  • 63
  • 62
  • 61
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Methods for Structural Health Monitoring and Damage Detection of Civil and Mechanical Systems

Bisht, Saurabh 07 July 2005 (has links)
In the field of structural engineering it is of vital importance that the condition of an ageing structure is monitored to detect damages that could possibly lead to failure of the structure. Over the past few years various methods for monitoring the condition of structures have been proposed. With respect to civil and mechanical structures several methods make use of modal parameters such as, natural frequency, damping ratio and mode shapes. In the present work four methods for modal parameter estimation and two methods for have been evaluated for their application to multi degree of freedom structures. The methods evaluated for modal parameter estimation are: Wavelet transform, Hilbert-Huang transform, parametric system identification and peak picking. Through various numerical simulations the effectiveness of these methods is studied. It is found that the simple peak-picking method performs the best and is able to identify modal parameters most accurately in all the simulation cases that were considered in this study. The identified modal parameters are then used for locating the damage. Herein the flexibility and the rotational flexibility approaches are evaluated for damage detection. The approach based on the rotational flexibility is found to be more effective. / Master of Science
452

Hidden Markov models : Identification, control and inverse filtering

Mattila, Robert January 2018 (has links)
The hidden Markov model (HMM) is one of the workhorse tools in, for example, statistical signal processing and machine learning. It has found applications in a vast number of fields, ranging all the way from bioscience to speech recognition to modeling of user interactions in social networks. In an HMM, a latent state transitions according to Markovian dynamics. The state is only observed indirectly via a noisy sensor – that is, it is hidden. This type of model is at the center of this thesis, which in turn touches upon three main themes. Firstly, we consider how the parameters of an HMM can be estimated from data. In particular, we explore how recently proposed methods of moments can be combined with more standard maximum likelihood (ML) estimation procedures. The motivation for this is that, albeit the ML estimate possesses many attractive statistical properties, many ML schemes have to rely on local-search procedures in practice, which are only guaranteed to converge to local stationary points in the likelihood surface – potentially inhibiting them from reaching the ML estimate. By combining the two types of algorithms, the goal is to obtain the benefits of both approaches: the consistency and low computational complexity of the former, and the high statistical efficiency of the latter. The filtering problem – estimating the hidden state of the system from observations – is of fundamental importance in many applications. As a second theme, we consider inverse filtering problems for HMMs. In these problems, the setup is reversed; what information about an HMM-filtering system is exposed by its state estimates? We show that it is possible to reconstruct the specifications of the sensor, as well as the observations that were made, from the filtering system’s posterior distributions of the latent state. This can be seen as a way of reverse engineering such a system, or as using an alternative data source to build a model. Thirdly, we consider Markov decision processes (MDPs) – systems with Markovian dynamics where the parameters can be influenced by the choice of a control input. In particular, we show how it is possible to incorporate prior information regarding monotonic structure of the optimal decision policy so as to accelerate its computation. Subsequently, we consider a real-world application by investigating how these models can be used to model the treatment of abdominal aortic aneurysms (AAAs). Our findings are that the structural properties of the optimal treatment policy are different than those used in clinical practice – in particular, that younger patients could benefit from earlier surgery. This indicates an opportunity for improved care of patients with AAAs. / <p>QC 20180301</p>
453

Hybrid Dynamic Modelling of Engine Emissions on Multi-Physics Simulation Platform. A Framework Combining Dynamic and Statistical Modelling to Develop Surrogate Models of System of Internal Combustion Engine for Emission Modelling

Pant, Gaurav January 2018 (has links)
The data-driven models used for the design of powertrain controllers are typically based on the data obtained from steady-state experiments. However, they are only valid under stable conditions and do not provide any information on the dynamic behaviour of the system. In order to capture this behaviour, dynamic modelling techniques are intensively studied to generate alternative solutions for engine mapping and calibration problem, aiming to address the need to increase productivity (reduce development time) and to develop better models for the actual behaviour of the engine under real-world conditions. In this thesis, a dynamic modelling approach is presented undertaken for the prediction of NOx emissions for a 2.0 litre Diesel engine, based on a coupled pre-validated virtual Diesel engine model (GT- Suite ® 1-D air path model) and in-cylinder combustion model (CMCL ® Stochastic Reactor Model Engine Suite). In the context of the considered Engine Simulation Framework, GT Suite + Stochastic Reactor Model (SRM), one fundamental problem is to establish a real time stochastic simulation capability. This problem can be addressed by replacing the slow combustion chemistry solver (SRM) with an appropriate NOx surrogate model. The approach taken in this research for the development of this surrogate model was based on a combination of design of dynamic experiments run on the virtual diesel engine model (GT- Suite), with a dynamic model fitted for the parameters required as input to the SRM, with a zonal design of experiments (DoEs), using Optimal Latin Hypercubes (OLH), run on the SRM model. A response surface model was fitted on the predicted NOx from the SRM OLH DoE data. This surrogate NOx model was then used to replace the computationally expensive SRM simulation, enabling real-time simulations of transient drive cycles to be executed. The performance of the approach was validated on a simulated NEDC drive cycle, against experimental data collected for the engine case study. The capability of methodology to capture the transient trends of the system shows promising results and will be used for the development of global surrogate prediction models for engine-out emissions.
454

Obtaining Pitch Control for Unmanned Aerial Vehicle Through System Identification

Karens, Lucia, Islam, Tawsiful January 2022 (has links)
This study aimed to develop and evaluate a method to obtain a proportional-integral-derivative (PID) controller. The controller is for a control surface that controls pitch motion, by using data from flight tests with an unmanned aerial vehicle (UAV). Finding a suitable method to develop the controllers is essential to make the UAV autonomous, whilst being stable and controllable. Before developing the PID, data from test flights were used to model a transfer function for the control surface with MATLAB's toolbox for system identification. Thereafter, using the transfer function, the PID was developed by using MATLAB’s toolbox for control systems. The whole method was evaluated by studying the rise time, settling time, and overshoot for the PID, and studying how well the transfer function fits with the flight data. The method of modeling the pitch motion with system identification and finding the PID gains has good potential to simplify the process of finding a PID controller. However, to acquire an accurate model for the pitch motion, which in turn can give a well-performing PID, an improved data sampling was suggested. Additionally, flight tests conducted before and after PID tuning, and in different conditions are recommended to be done in future studies. The flight test would work as a validation for the model to acquire a robust PID that performs as expected. / Syftet med denna studie var att utveckla och utvärdera en metod för att hitta en proportionerlig integrerande deriverande (PID) regulator. Regulatorn är för en kontrollyta som kontrollerar tipprörelsen genom att använda data från flygtester med en drönare. Att hitta en lämplig metod för att utveckla regulatorer är nödvändigt för att göra drönaren autonom, samtidigt som den är stabil och kontrollerbar. Innan PID:n utvecklades användes data från flygtester för att modellera överföringsfunktionen för kontrollytan med MATLAB:s programvara för systemidentifiering. Därefter, genom att använda överföringsfunktionen, utvecklades PID:n med MATLAB:s programvara för reglersystem. Hela metoden utvärderades genom att studera stigtid, insvängningstid och översläng för PID regulatorn, samt studera hur väl överföringsfunktionen modellerar flygdata. Metoden för att modellera tipprörelsen och att hitta PID förstärkningarna har en god potential att förenkla processen av att hitta en PID regulator. Däremot för att få en precis modell för tipprörelsen, vilket i sin tur kan ge en välpresterande PID, föreslogs det att förbättra datainsamlingen. Dessutom rekommenderades det i framtida studier att flygtester genomförs i olika förhållande, både före och efter att PID regulatorn har hittats. Flygtesterna skulle fungera som en bekräftelse för modellen för att få en robust PID som presterar som väntat. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
455

Learning in the Loop : On Neural Network-based Model Predictive Control and Cooperative System Identification

Winqvist, Rebecka January 2023 (has links)
Inom reglerteknik har integrationen av maskininlärningsmetoder framträtt som en central strategi för att förbättra prestanda och adaptivitet hos styrsystem. Betydande framsteg har gjorts inom flera viktiga aspekter av reglerkretsen, såsom inlärningsbaserade metoder för systemidentifiering och parameterskattning, filtrering och brusreducering samt reglersyntes. Denna avhandling fördjupar sig i området inlärning för reglerteknik med särskild betoning på inlärningsbaserade regulatorer och identifieringsmetoder.  Avhandlingens första del behandlar undersökningen av neuronnätsbaserad Modellprediktiv Reglering (MPC). Olika nätstrukturer studeras, både generella black box-nät och nät som väver in MPC-specifik information i sin struktur. Dessa nät jämförs och utvärderas med avseende på två prestandamått genom experiment på realistiska två- och fyrdimensionella system. Den huvudsakliga nyskapande aspekten är inkluderingen av gradientdata i träningsprocessen, vilket visar sig förbättra noggrannheten av de genererade styrsignalerna. Vidare påvisar de experimentella resultaten att en MPC-informerad nätstruktur leder till förbättrad prestanda när mängden träningsdata är begränsad.  Med insikt om vikten av noggranna matematiska modeller av styrsystemet, riktar den andra delen av avhandlingen sitt fokus mot inlärningsbaserade identifieringsmetoder. Denna forskningsgren behandlar karakterisering och modellering av dynamiska system med hjälp av maskininlärning. Avhandlingen bidrar till området genom att introducera kooperativa systemidentifieringsmetoder för att förbättra parameterskattningen. Specifikt utnyttjas verktyg från Optimal Transport för att introducera en ny och mer generell formulering av ramverket Correctional Learning. Detta ramverk är baserat på en mästare-lärlingsmodell, där en expertagent (mästare) observerar och modifierar den insamlade data som används av en lärande agent (lärling), med syftet att förbättra lärlingens skattningsprocess. Genom att formulera correctional learning som ett optimal transport-problem erhålls ett mer flexibelt ramverk, bättre lämpat för skattning av komplexa systemegenskaper samt anpassning till alternativa handlingsstrategier. / In the context of control systems, the integration of machine learning mechanisms has emerged as a key approach for improving performance and adaptability. Notable progress has been made across several aspects of the control loop, including learning-based techniques for system identification and estimation, filtering and denoising, and controller design. This thesis delves into the rapidly expanding domain of learning in control, with a particular focus placed on learning-based controllers and learning-based identification methods. The first part of this thesis is devoted to the investigation of Neural Network approximations of Model Predictive Control (MPC). Model-agnostic neural network structures are compared to networks employing MPC-specific information, and evaluated in terms of two performance metrics. The main novel aspect lies in the incorporation of gradient data in the training process, which is shown to enhance the accuracy of the network generated control inputs. Furthermore, experimental results reveal that MPC-informed networks outperform the agnostic counterparts in scenarios when training data is limited. In acknowledgement of the crucial role accurate system models play in in the control loop, the second part of this thesis lends its focus to learning-based identification methods. This line of work addresses the important task of characterizing and modeling dynamical systems, by introducing cooperative system identification techniques to enhance estimation performance. Specifically, it presents a novel and generalized formulation of the Correctional Learning framework, leveraging tools from Optimal Transport. The correctional learning framework centers around a teacher-student model, where an expert agent (teacher) modifies the sampled data used by the learner agent (student), to improve the student's estimation process. By formulating correctional learning as an optimal transport problem, a more adaptable framework is achieved, better suited for estimating complex system characteristics and accommodating alternative intervention strategies. / VR 2018-03438 projekt 3224
456

Advances in Aero-Propulsive Modeling for Fixed-Wing and eVTOL Aircraft Using Experimental Data

Simmons, Benjamin Mason 09 July 2023 (has links)
Small unmanned aircraft and electric vertical takeoff and landing (eVTOL) aircraft have recently emerged as vehicles able to perform new missions and stimulate future air transportation methods. This dissertation presents several system identification research advancements for these modern aircraft configurations enabling accurate mathematical model development for flight dynamics simulations based on wind-tunnel and flight-test data. The first part of the dissertation focuses on advances in flight-test system identification methods using small, fixed-wing, remotely-piloted, electric, propeller-driven aircraft. A generalized approach for flight dynamics model development for small fixed-wing aircraft from flight data is described and is followed by presentation of novel flight-test system identification applications, including: aero-propulsive model development for propeller aircraft and nonlinear dynamic model identification without mass properties. The second part of the dissertation builds on established fixed-wing and rotary-wing aircraft system identification methods to develop modeling strategies for transitioning, distributed propulsion, eVTOL aircraft. Novel wind-tunnel experiment designs and aero-propulsive modeling approaches are developed using a subscale, tandem tilt-wing, eVTOL aircraft, leveraging design of experiments and response surface methodology techniques. Additionally, a method applying orthogonal phase-optimized multisine input excitations to aircraft control effectors in wind-tunnel testing is developed to improve test efficiency and identified model utility. Finally, the culmination of this dissertation is synthesis of the techniques described throughout the document to form a flight-test system identification approach for eVTOL aircraft that is demonstrated using a high-fidelity flight dynamics simulation. The research findings highlighted throughout the dissertation constitute substantial progress in efficient empirical aircraft modeling strategies that are applicable to many current and future aeronautical vehicles enabling accurate flight simulation development, which can subsequently be used to foster advancement in many other pertinent technology areas. / Doctor of Philosophy / Small, electric-powered airplanes flown without an onboard pilot, as well as novel electric aircraft configurations with many propellers that operate at a wide range of speeds, referred to as electric vertical takeoff and landing (eVTOL) aircraft, have recently emerged as aeronautical vehicles able to perform new tasks for future airborne transportation methods. This dissertation presents several mathematical modeling research advancements for these modern aircraft that foster accurate description and prediction of their motion in flight. The mathematical models are developed from data collected in wind-tunnel tests that force air over a vehicle to simulate the aerodynamic forces in flight, as well as from data collected while flying the aircraft. The first part of the dissertation focuses on advances in mathematical modeling approaches using flight data collected from small traditional airplane configurations that are controlled by a pilot operating the vehicle from the ground. A generalized approach for mathematical model development for small airplanes from flight data is described and is followed by presentation of novel modeling applications, including: characterization of the coupled airframe and propulsion aerodynamics and model development when vehicle mass properties are not known. The second part of the dissertation builds on established airplane, helicopter, and multirotor mathematical modeling methods to develop strategies for characterization of the flight motion of eVTOL aircraft. Innovative data collection and modeling approaches using wind-tunnel testing are developed and applied to a subscale eVTOL aircraft with two tilting wings. Statistically rigorous experimentation strategies are employed to allow the effects of many individual controls and their interactions to be simultaneously distinguished while also allowing expeditious test execution and enhancement of the mathematical model prediction capability. Finally, techniques highlighted throughout the dissertation are combined to form a mathematical modeling approach for eVTOL aircraft using flight data, which is demonstrated using a realistic flight simulation. The research findings described throughout the dissertation constitute substantial progress in efficient aircraft modeling strategies that are applicable to many current and future vehicles enabling accurate flight simulator development, which can subsequently be used for many research applications.
457

State Variable System Identification through Frequency Domain Techniques

Bihl, Trevor Joseph 26 July 2011 (has links)
No description available.
458

Aerodynamic Modeling in Nonlinear Regions, including Stall Spins, for Fixed-Wing Unmanned Aircraft from Experimental Flight Data

Gresham, James Louis 28 June 2022 (has links)
With the proliferation of unmanned aircraft designed for national security and commercial purposes, opportunities exist to create high-fidelity aerodynamic models with flight test techniques developed specifically for remotely piloted aircraft. Then, highly maneuverable unmanned aircraft can be employed to their greatest potential in a safe manner using advanced control laws. In this dissertation, novel techniques are used to identify nonlinear, coupled, aerodynamic models for fixed-wing, unmanned aircraft from flight test data alone. Included are quasi-steady and unsteady nominal flight models, aero-propulsive models, and spinning flight models. A novel flight test technique for unmanned aircraft, excitation with remote uncorrelated pilot inputs, is developed for use in nominal and nonlinear flight regimes. Orthogonal phase-optimized multisine excitation signals are also used as inputs while collecting gliding, aero-propulsive, and spinning flight data. A novel vector decomposition of explanatory variables leads to an elegant model structure for stall spin flight data analysis and spin aerodynamic modeling. Results for each model developed show good agreement between model predictions and validation flight data. Two novel applications of aerodynamic modeling are discussed including energy-based nonlinear directional control and a spin flight path control law for use as a flight termination system. Experimental and simulation results from these applications demonstrate the utility of high-fidelity models developed from flight data. / Doctor of Philosophy / This dissertation presents flight test experiments conducted using a small remotely controlled airplane to determine mathematical equations and parameter values, called models, to describe the airplane's motion. Then, the models are applied to control the path of the airplane. The process to develop the models and predict an airplane's motion using flight data is described. New techniques are presented for data collection and analysis for unusual flight conditions, including a spinning descent. Results show the techniques can predict the airplane's motion very well. Two experiments are presented demonstrating new applications and the usefulness of the mathematical models.
459

Real-Time Ground Vehicle Parameter Estimation and System Identification for Improved Stability Controllers

Kolansky, Jeremy Joseph 10 April 2014 (has links)
Vehicle characteristics have a significant impact on handling, stability, and rollover propensity. This research is dedicated to furthering the research in and modeling of vehicle dynamics and parameter estimation. Parameter estimation is a challenging problem. Many different elements play into the stability of a parameter estimation algorithm. The primary trade-off is robustness for accuracy. Lyapunov estimation techniques, for instance, guarantee stability but do not guarantee parameter accuracy. The ability to observe the states of the system, whether by sensors or observers is a key problem. This research significantly improves the Generalized Polynomial Chaos Extended Kalman Filter (gPC-EKF) for state-space systems. Here it is also expanded to parameter regression, where it shows excellent capabilities for estimating parameters in linear regression problems. The modeling of ground vehicles has many challenges. Compounding the problems in the parameter estimation methods, the modeling of ground vehicles is very complex and contains many difficulties. Full multibody dynamics models may be able to accurately represent most of the dynamics of the suspension and vehicle body, but the computational time and required knowledge is too significant for real-time and realistic implementation. The literature is filled with different models to represent the dynamics of the ground vehicle, but these models were primarily designed for controller use or to simplify the understanding of the vehicle’s dynamics, and are not suitable for parameter estimation. A model is devised that can be utilized for the parameter estimation. The parameters in the model are updated through the aforementioned gPC-EKF method as applies to polynomial systems. The mass and the horizontal center of gravity (CG) position of the vehicle are estimated to high accuracy. The culmination of this work is the estimation of the normal forces at the tire contact patch. These forces are estimated through a mapping of the suspension kinematics in conjunction with the previously estimated vehicle parameters. A proof of concept study is shown, where the system is mapped and the forces are recreated and verified for several different scenarios and for changing vehicle mass. / Ph. D.
460

Wavelets Based on Second Order Linear Time Invariant Systems, Theory and Applications

Abuhamdia, Tariq Maysarah 28 April 2017 (has links)
This study introduces new families of wavelets. The first is directly derived from the response of Second Order Underdamped Linear-Time-Invariant (SOULTI) systems, while the second is a generalization of the first to the complex domain and is similar to the Laplace transform kernel function. The first takes the acronym of SOULTI wavelet, while the second is named the Laplace wavelet. The most important criteria for a function or signal to be a wavelet is the ability to recover the original signal back from its continuous wavelet transform. It is shown that it is possible to recover back the original signal once the SOULTI or the Laplace wavelet transform is applied to decompose the signal. It is found that both wavelet transforms satisfy linear differential equations called the reconstructing differential equations, which are closely related to the differential equations that produce the wavelets. The new wavelets can have well defined Time-Frequency resolutions, and they have useful properties; a direct relation between the scale and the frequency, unique transform formulas that can be easily obtained for most elementary signals such as unit step, sinusoids, polynomials, and decaying harmonic signals, and linear relations between the wavelet transform of signals and the wavelet transform of their derivatives and integrals. The defined wavelets are applied to system analysis applications. The new wavelets showed accurate instantaneous frequency identification and modal decomposition of LTI Multi-Degree of Freedom (MDOF) systems and it showed better results than the Short-time Fourier Transform (STFT) and the other harmonic wavelets used in time-frequency analysis. The modal decomposition is applied for modal parameters identification, and the properties of the Laplace and the SOULTI wavelet transforms allows analytical and accurate identification methods. / Ph. D.

Page generated in 0.1011 seconds