• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vision conoscopique 3D : Calibration et reconstruction

Gava, Didier 01 June 1998 (has links) (PDF)
La métrologie industrielle est l'un des enjeux actuels de tous les secteurs d'activité qui nécessitent de réaliser un contrôle dimensionnel précis de produits afin de garantir des spécificités conformes aux normes et de tendre vers une qualité ``zéro défaut''. Les systèmes actuels utilisés s'appuient sur des technologies fondées sur la stéréométrie, la photogrammétrie, la projection de lumière structurée, la triangulation active ou le temps de vol. En général non polyvalents, encombrants, fragiles et ne pouvant s'adapter à des environnements hostiles, ces systèmes souffrent d'une limitation géométrique en raison de l'existence d'un angle mort dans lequel aucune mesure ne peut être réalisée.<br /><br />Dans cette thèse, nous proposons un nouveau capteur, le scanner conoscopique, capable d'effectuer des mesures dans les domaines macroscopiques et microscopiques, fonctionnant dans n'importe quel environnement, même hostile, très compact et utilisant de la lumière spatialement incohérente.<br /><br />Exploitant le principe de la conoscopie et donc des propriétés de biréfringence des cristaux, le scanner conoscopique est composé d'une caméra à couplage de charges (CCD), d'un système conoscopique et d'une unité de traitement de l'information. A partir des spécifications de ses performances en terme de précision au millième de millimètre sur les mesures 3D, nous avons été conduit à analyser et caractériser chaque élément de la chaîne de mesure dont la calibration est l'étape fondamentale.<br /><br />Nous avons tout d'abord développé une technique de calibration de la caméra à couplage de charges (CCD) à partir d'un modèle sténopé qui combine les paramètres intrinsèques et extrinsèques et exploitant les points d'amers. Nous avons abouti à une précision de 1.5% du champ d'analyse. Ensuite, nous avons proposé deux méthodes de calibration du système conoscopique, l'une analytique par calcul direct de la phase et exploitant les équations de l'optique et de la biréfringence des cristaux, l'autre expérimentale par dénombrement des franges d'interférence et s'appuyant sur la connaissance d'abaques incluant la variation de température, d'éclairement, la nature des matériaux et intégrant une modélisation globale du bruit d'acquisition. La validation expérimentale réalisée d'une part sur des profils géométriques simples (créneaux, escaliers...) et d'autre part sur des objets 3D réels a permis d'établir que la précision de mesure est de 1.5% du champ d'analyse.<br /><br />Ayant établi la faisabilité technologique de la calibration du système qui permet de garantir les spécifications souhaitées, nous nous sommes plus particulièrement interessé à deux configurations du scanner conoscopique : fixe et à balayage, dont nous avons analysé les performances sur des objets diffusifs pour des formes et des matériaux différents. Nous avons établi que la précision des mesures est de l'ordre du millième du champ de mesure.<br /><br />L'ensemble des contributions de cette thèse est intégré au système actuellement développé qui est par ailleurs commercialisé et utilisé dans des applications industrielles et médicales.
2

Contrôle du bruit quantique de la lumière et mesures quantiques non destructives utilisant des atomes piègés et refroidis.

Vigneron, Karine 10 July 1998 (has links) (PDF)
Dans ce mémoire, nous présentons d'une part la réalisation expérimentale d'une mesure quantique non destructive (qnd) en optique et, d'autre part, la contribution apportée a des expériences futures de piège dipolaire optique et d'électrodynamique quantique en cavité en régime de couplage fort. L'objectif d'un dispositif de mesure qnd est de contrôler l'action en retour imposée par la mécanique quantique, qui se produit sur un système soumis a une mesure. Il est en effet possible de rejeter cette perturbation entièrement sur l'observable conjuguée de celle mesurée, laissant celle-ci inchangée. Dans le domaine de l'optique, il s'agit de l'amplitude et de la phase du champ electromagnetique. L'expérience réalisée utilise le couplage par effet kerr croise de deux faisceaux lasers dans un milieu non-lineaire. Ce milieu est compose d'un piège magneto-optique de rubidium place dans une cavité optique doublement résonnante. La structure a trois niveaux en lambda que nous avons retenue permet de coupler l'intensité du faisceau signal a la phase du faisceau mesure. Nous présentons également une comparaison entre les résultats expérimentaux obtenus et les prédictions théoriques d'un modèle d'atomes a trois niveaux. L'accord est très satisfaisant et cette expérience détient, a ce jour, le record mondial d'efficacité qnd. En dernier lieu, nous envisageons une nouvelle série d'expérience qui a pour but, dans un premier temps, de piéger des atomes grâce a la force dipolaire optique résultant d'un fort gradient d'intensité laser ; et, dans un second temps, d'observer des phénomènes spécifiques au régime d'électrodynamique quantique en cavité en régime de couplage fort. Les travaux préliminaires présentés ici, concerne la conception optique d'un objectif et d'une cavite de tres grande ouverture numérique, qui ont été montes, règles et caractérisés. La réalisation de ce système optique laisse présager des perspectives d'expériences originales et non réalisées a ce jour, dans le domaine des longueurs d'ondes optiques.

Page generated in 0.2711 seconds