1 |
Assessing a quantitative approach to tactical asset allocationRobinson, James Walter 03 June 2012 (has links)
Against a backdrop of controversy surrounding market timing, this research assesses the merits of a tactical asset allocation strategy for the South African market. The purpose of this research is to assess whether a simple quantitative method - initially presented by Faber (2007) - can successfully reduce volatility and increase returns of selected indices within the Johannesburg Stock Exchange (JSE). The All Share (ALSI), Financial&Industrial (FINI), Resource (RESI), Africa Gold Mining (AGMI), Government Bond (GOVI) and Property Unit Trust (PUTI) indices were examined. A strategy based on a ten-month simple moving average was compared against a buy-and-hold strategy, with results presented for these strategies both excluding and including transaction costs. The strategies were tested over a 50-year period from 1961 to 2010. The results show that superior risk-adjusted returns are possible even in the presence of high transaction costs. Further insights suggest that tactical asset allocation strategies yield improved performances when used in specific sectors and/or asset classes, instead of in consolidated sectors represented by the market.Copyright / Dissertation (MBA)--University of Pretoria, 2012. / Gordon Institute of Business Science (GIBS) / unrestricted
|
2 |
Assessing a quantitative approach to tactical asset allocationRoyston, Guy Andrew 04 August 2012 (has links)
The purpose of this paper is to determine whether the adoption of a simple trend-following quantitative method improves the risk-adjusted returns across various asset classes within a South African market setting. A simple moving average timing model is tested since 1925 on the South African equity and bond markets and within a tactical asset allocation framework. The timing solution when applied to the JSE All Share Index, RSA Government Bond Index and within an equally weighted portfolio improved returns, while reducing risk. Testing the model within sample by decade highlighted periods of inferior return performance providing evidence to support prior research (Faber, 2007) that the timing model acts as a risk reduction technique with limited to no impact on return. / Dissertation (MBA)--University of Pretoria, 2012. / Gordon Institute of Business Science (GIBS) / unrestricted
|
3 |
EMPIRICAL EVIDENCE ON PREDICTABILITY OF EXCESS RETURNS: CONTRARIAN STRATEGY, DOLLAR COST AVERAGING, TACTICAL ASSET ALLOCATION BASED ON A THICK MODELING STRATEGYBORELLO, GIULIANA 15 March 2010 (has links)
Questa tesi è composta da 3 differenti lavori che ci confermano la prevedibilità degli extra rendimenti rispetto al mercato usando semplici strategie di portafoglio azionario utilizzabili sia dal semplice risparmiatore sia dall'investitore istituzionale.
Nel primo capitolo è stata analizzata la profittabilità della contrarian strategy nel mercato azionario Italiano. In letteratura é stato già abbondantemente dimostrato che i rendimenti azionari sono caratterizzati da un’autocorrelazione negativa nel breve periodo e da un effetto di ritorno alla media nel lungo periodo. La contrarian strategy é utilizzata per trarre profitto dalla correlazione seriale negativa dei rendimenti azionari, infatti, vendendo i titoli che si sono rivelati vincenti nel passato (in termini di rendimento) e acquistando quelli "perdenti" si ottengono profitti inaspettati.
Nel secondo paper, l'analisi si focalizza sulla strategia di portafoglio definita Dollar Cost Averaging (DCA). La Dollar Cost Averaging si riferisce a una semplice metodologia di portafoglio che prevede di investire una somma fissa di denaro in un'attività rischiosa a uguali intervalli di tempo, per tutto l'orizzonte temporale prefissato. Il lavoro si propone di confrontare i vantaggi, in termini di riduzione sostanziale del rischio, di questa strategia dal punto di vista di un semplice risparmiatore. Nell'ultimo capitolo, ipotizzando di essere un investitore istituzionale che possiede ogni giorno numerose informazioni e previsioni, ho cercato di capire come egli può usare tutte le informazioni in suo possesso per decidere prontamente come allocare al meglio il patrimonio del fondo. L’investitore normalmente cerca di identificare la migliore previsione possibile, ma quasi sempre non riesce ad identificare l’esatto processo dei prezzi sottostanti. Quest’osservazione ha condotto molti ricercatori ad utilizzare numerosi fattori esplicativi per ottenere un buona previsione. Il paper supporta l’esistente letteratura che utilizza un nuovo approccio per trasformare previsioni di rendimenti in scelte di gestione di portafoglio che possano offrire una maggiore performance del portafoglio.Partendo dal modello d’incertezza di Pesaran e Timmerman(1996), considero un cospicuo numero di fattori macroeconomici per identificare un modello predittivo che mi permetta di prevedere i movimenti del mercato tenendo presente i maggiori indicatori economici e finanziari e considerato che il loro rispettivo potere predittivo cambia nel tempo. / This thesis is composed by three different papers that confirm us the predictability of expected returns using different simple portfolio strategy and under different point of view (i.e. a generic saver and institutional investor).
In the first chapter, I investigate the profitability of contrarian strategy in the Italian Stock Market.
However empirical research has shown that asset returns tend to exhibit some form of negative autocorrelation in the short term and mean-reversion over long horizons. Contrarian strategy is used to take advantage of serial correlation in stock price returns, such that selling winners and buying losers generates abnormal profits.
On the second chapter, the analyse is focused in another classic portfolio strategy called Dollar Cost Averaging (DCA). Dollar Cost Averaging refers to an investment methodology in which a set dollar amount is invested in a risky asset at equal intervals over a holding period. The paper compares the advantages and risk of this strategy from the point of view of a saver.
Lastly, supposing to be an institutional investor who has a large number of information and forecasts, I tried to understand how using all them he decide with dispatch how to allocate the portfolio fund.
When a wide set of forecasts of some future economic events are available, decision makers usually attempt to discover which is the best forecast, but in almost all cases a decision maker cannot identify ex ante the true process. This observation has led researchers to introduce several sources of uncertainty in forecasting exercises. The paper supporting the existent literature employs a novel approaches to transform predicted returns into portfolio asset allocations, and their relative performances. First of all dealing with model uncertainty, as Pesaran and Timmerman (1996), I consider a richer parameterization for the forecasting model to find that the predictive power of various economic and financial factors over excess returns change through time.
|
4 |
Optimizing the Nuclear Waste Fund's Profit / Optimering av Kärnavfallsfondens avkastningKazi-tani, Zakaria, Ramirez Alvarez, André January 2018 (has links)
The Nuclear Waste Fund constitutes a financial system that finances future costs of the management of spent nuclear fuel as well as decommissioning of nuclear power plants. The fund invests its capital under strict rules which are stipulated in the investment policy established by the board. The policy stipulates that the fund can only invest according to certain allocation limits, and restricts it to invest solely in nominal and inflation-linked bonds issued by the Swedish state as well as treasury securities. A norm portfolio is built to compare the performance of the NWF’s investments. On average, the NWF has outperformed the norm portfolio on recent years, but it may not always have been optimal. Recent studies suggest that allocation limits should be revised over time as the return and risk parameters may change over time. This study focused on simulating three different portfolios where the allocation limits and investment options were extended to see if these extensions would outperform the norm portfolio while maintaining a set risk limit. Portfolio A consisted of OMRX REAL and OMRX TBOND indexes, Portfolio B consisted of OMRX REAL, OMRX TBOND and S&P Sweden 1+ Year Investment Grade Corporate Bond Indexes, and Portfolio C consisted of OMXR REAL, OMRX TBOND and OMXSPI indexes. The return of each portfolio for different weight distributions of the assets were simulated in MATLAB, and polynomial regression models were built in order to optimize the return as a function of the assets’ weights using a Lagrange Multiplier approach for each portfolio. The results depicted that the maximal returns of Portfolios A, B and C were 4.00%, 4.13% and 7.93% respectively, outperforming the norm portfolio’s average return of 3.69% over the time period 2009-2016.
|
5 |
Multivariate Financial Time Series and Volatility Models with Applications to Tactical Asset Allocation / Multivariata finansiella tidsserier och volatilitetsmodeller med tillämpningar för taktisk tillgångsallokeringAndersson, Markus January 2015 (has links)
The financial markets have a complex structure and the modelling techniques have recently been more and more complicated. So for a portfolio manager it is very important to find better and more sophisticated modelling techniques especially after the 2007-2008 banking crisis. The idea in this thesis is to find the connection between the components in macroeconomic environment and portfolios consisting of assets from OMX Stockholm 30 and use these relationships to perform Tactical Asset Allocation (TAA). The more specific aim of the project is to prove that dynamic modelling techniques outperform static models in portfolio theory. / Den finansiella marknaden är av en väldigt komplex struktur och modelleringsteknikerna har under senare tid blivit allt mer komplicerade. För en portföljförvaltare är det av yttersta vikt att finna mer sofistikerade modelleringstekniker, speciellt efter finanskrisen 2007-2008. Idéen i den här uppsatsen är att finna ett samband mellan makroekonomiska faktorer och aktieportföljer innehållande tillgångar från OMX Stockholm 30 och använda dessa för att utföra Tactial Asset Allocation (TAA). Mer specifikt är målsättningen att visa att dynamiska modelleringstekniker har ett bättre utfall än mer statiska modeller i portföljteori.
|
Page generated in 0.131 seconds