• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 1
  • Tagged with
  • 31
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Factors affecting larval growth and development of the boreal chorus frog Pseudacris maculata

Whiting, Arthur V. Unknown Date
No description available.
12

Chondrocranial Evolution in Rana Tadpoles: Integrating Form, Function, Ontogeny, and Phylogeny

Larson, Peter 04 December 2003 (has links)
No description available.
13

Computational study of the mechanisms underlying oscillation in neuronal locomotor circuits

Merrison-Hort, Robert January 2014 (has links)
In this thesis we model two very different movement-related neuronal circuits, both of which produce oscillatory patterns of activity. In one case we study oscillatory activity in the basal ganglia under both normal and Parkinsonian conditions. First, we used a detailed Hodgkin-Huxley type spiking model to investigate the activity patterns that arise when oscillatory cortical input is transmitted to the globus pallidus via the subthalamic nucleus. Our model reproduced a result from rodent studies which shows that two anti-phase oscillatory groups of pallidal neurons appear under Parkinsonian conditions. Secondly, we used a population model of the basal ganglia to study whether oscillations could be locally generated. The basal ganglia are thought to be organised into multiple parallel channels. In our model, isolated channels could not generate oscillations, but if the lateral inhibition between channels is sufficiently strong then the network can act as a rhythm-generating ``pacemaker'' circuit. This was particularly true when we used a set of connection strength parameters that represent the basal ganglia under Parkinsonian conditions. Since many things are not known about the anatomy and electrophysiology of the basal ganglia, we also studied oscillatory activity in another, much simpler, movement-related neuronal system: the spinal cord of the Xenopus tadpole. We built a computational model of the spinal cord containing approximately 1,500 biologically realistic Hodgkin-Huxley neurons, with synaptic connectivity derived from a computational model of axon growth. The model produced physiological swimming behaviour and was used to investigate which aspects of axon growth and neuron dynamics are behaviourally important. We found that the oscillatory attractor associated with swimming was remarkably stable, which suggests that, surprisingly, many features of axonal growth and synapse formation are not necessary for swimming to emerge. We also studied how the same spinal cord network can generate a different oscillatory pattern in which neurons on both sides of the body fire synchronously. Our results here suggest that under normal conditions the synchronous state is unstable or weakly stable, but that even small increases in spike transmission delays act to stabilise it. Finally, we found that although the basal ganglia and the tadpole spinal cord are very different systems, the underlying mechanism by which they can produce oscillations may be remarkably similar. Insights from the tadpole model allow us to predict how the basal ganglia model may be capable of producing multiple patterns of oscillatory activity.
14

Biological Indicators of Wetland Health: Comparing Qualitative and Quantitative Vegetation Measures with Anuran Measures

Gonzalez, Shannon M 09 April 2004 (has links)
Understanding wetland responses to human perturbations is essential to the effective management of Florida's surface and ground water resources. Southwest Florida Water Management District (SWFWMD) Rules (Chapter 40D-2.301(c) FAC) prohibit adverse environmental effects to wetlands, fish and wildlife caused by groundwater withdrawal. Numerous studies have documented the responses of biological attributes across taxa and regions to human disturbance. Biological assessment can provide information about ecological condition. Based on long-term monitoring conducted by the SWFWMD, the anthropogenic changes observed on the Starkey Wellfield are attributed to groundwater withdrawal. Biological indicators are species, species assemblages, or communities whose presence, abundance, and condition are indicative of a particular set of environmental conditions. Monitoring early indicators of ecosystem stress may shorten response time by shifting attention to the relatively quick response of sensitive species. Species used to assess biological condition should be abundant and tractable elements of the system that provide an early, diagnosis. Regulatory requirements within 40D-2 F.A.C. dictate an extensive analysis be conducted twice yearly on wetlands within all wellfields. This quantitative analysis provides information on the wetland plant community through the collection of eighteen categorized vegetative and physical variables. Because of the size of the area in which monitoring is required and the large number of wetlands, a rapid qualitative monitoring method was developed using vegetation and physical variables to classify wetlands into one of three categories based on their perceived health. Wetland plants have many characteristics suited to assessments of biological condition including their diversity, taxonomy, distribution, relative immobility, well developed sampling protocols, and, for herbaceous species, their moderate sensitivity to disturbance (U.S. EPA 2002, Doherty et al. 2000). Because amphibians occupy both aquatic and terrestrial habitats in their life history, have physiological adaptations and specific microhabitat requirements, they are considered to be extremely sensitive to environmental perturbations and excellent barometers of the health of the aquatic and terrestrial habitats in which they reside (Vitt et al. 1990, Wake 1998, Blaustein 1994, Blaustein et al. 1994). The purpose of my study was to 1) compare a qualitative method of wetland vegetation monitoring to a quantitative method, 2) document the reproductive success of anurans, and 3) compare anuran reproductive success to the vegetation monitoring results on the J. B. Starkey Wellfield (SWF). The results are published in chapters, with each chapter addressing one of the topics stated above. The results show a rapid, qualitative measure of wetland health is useful for the determination of severely affected wetlands. The anuran reproductive success reflected similar results. The results show that wetlands can be categorized based solely on amphibian reproductive success variables. The anuran categorization, qualitative vegetative categorization, and quantitative vegetative categorization overlap on the high and low success wetlands. The low degree of overlap observed in the intermediate category could be attributed to fish predation in a wetland otherwise suited for amphibian reproduction, natural variability in the two years of anuran data collected or lag time inherent in vegetative monitoring. Strong correlative evidence suggests hydroperiod regulates anuran reproductive success on the J. B. Starkey Wellfield. The average length of inundation was correlated with the number of tadpoles captured per unit effort and the number of tadpole species captured per year (R=0.73, p<.01; R=0.70, p<.05). The average Julian date of inundation at which breeding attempts stopped and no tadpoles were observed was weeks within the published breeding season for many species. I detected a correlation between the number of species calling in each wetland and the number of tadpole species captured per year (R=0.87, p<.001) suggesting call censuses may be used at this site to estimate anuran reproductive success if enough well-timed observations are made. These findings will allow resource managers and regulators to evaluate and possibly refine land management practices, including existing monitoring methods, and water policy to meet the needs of resident amphibians at the J.B. Starkey Wellfield.
15

An Investigation of the Effect of Malathion on Adaptive Plasticity of Pseudacris sierra

Maples, Michael Jonathan 01 August 2015 (has links) (PDF)
This thesis is composed of two chapters. Chapter one reviews what is known about adaptive plasticity in response to predators, describes the physiological systems involved in such plasticity, and outlines the evolutionary consequences of adaptive plasticity. Chapter two describes a scientific experiment that investigates how malathion may impact adaptive plasticity in the Sierran Treefrog, Pseudacris sierra. Anuran tadpoles suffer high mortality rates due to predation. In response to strong selective forces relating to these high predation rates, tadpoles evolved the ability to adaptively respond to predators through morphological and behavioral plasticity. The morphological and behavioral responses are varied and depend on the hunting strategy of the predator, and the adaptive responses may be influenced by other biotic and abiotic factors. Tadpoles detect alarm cues released from tadpoles being eaten and kairomones that are released by predators. Tadpoles respond to these signals by changing tail and body shape along with a reduction of activity level, which enables tadpoles to escape predators more effectively. These changes in morphology can occur within a week, and behavioral changes can occur within 15 minutes. The adaptive responses are critical for increasing survival rates of tadpoles to metamorphosis and may have important evolutionary consequences for anurans. Amphibians are in decline worldwide, and pollutants are considered to be a major contributor to these declines. Every year 5.2 billion pounds of active ingredients of pesticides are applied worldwide, and these application rates have led to ubiquitous low-level contamination of aquatic ecosystems. How low-level contamination of pesticides directly and indirectly affect how tadpoles respond to their predators is poorly understood. One potential indirect effect of pesticides is the inhibition of adaptive plasticity. Pesticides have been shown to modulate corticosterone levels in tadpoles. Corticosterone is the most likely mediator of the physiological response that results in adaptive morphological change. If the physiological system of tadpoles relies on corticosterone as the mediator of adaptive response, and pesticides can modulate corticosteone levels, then pesticides may inhibit or negatively impact adaptive responses to important biotic factors, like predators. Pesticides have been shown to weaken immune systems, affect developmental and physiological pathways that lead to malformations, and cause direct mortality in anurans. Little research has investigated the effect of pesticides on adaptive morphological and behavioral plasticity in response to predators. Adaptive phenotypic responses to predators increase survival rates to metamorphosis and are important in stabilizing amphibian populations through time. If pesticides influence the ecological interactions of tadpoles and their predators, this could play a part in amphibian declines. In the experiment explained in Chapter two, I tested the hypothesis that malathion at a concentration of 0.1 mg/L inhibits anti-predator morphological and behavioral responses of Pseudacris sierra to the predatory dragonfly larvae Anax junius. The results of this experiment show that malathion alone caused the tail muscle depth to increase to the same magnitude as tadpoles that only experienced a predator’s presence. Malathion also caused a significant increase in tail depth, demonstrating that malathion directly causes morphological change. The experiment did not support the hypothesis that malathion inhibits adaptive plasticity, and malathion had no impact on behavioral plasticity. The results from this experiment give evidence that an ecologically relevant concentration of malathion can influence morphological components that are critical in escaping depredation events, which could affect predator-prey interactions.
16

Synthesis of Tadpole-Like Polystyrenes

Zhang, Fan, Mr. 17 September 2014 (has links)
No description available.
17

Physical and Biological Drivers of Wetlandscape Biogeochemistry

Corline, Nicholas John 22 May 2024 (has links)
Wetlands play a vital role in regional and global biogeochemistry by controlling the movement and cycling of nutrients and carbon. While individual wetlands may provide these ecosystem services, high density wetland landscapes, referred to as wetlandscapes, can have far reaching aggregate effects on elemental cycling and solute transport. Here we use forested Delmarva bays or wetlands as a study ecosystem to explore physical and biological controls on wetland chemistry within forested wetlandscapes. The Delmarva wetlandscape consists of thousands of geographically isolated wetlands on the Delmarva Peninsula, United States, which despite their proximity to each other have highly variable sizes, shapes, hydrology, vegetative cover, and biological communities. This physical and biological variation makes the Delmarva wetlandscape an ideal ecosystem to understand spatio-temporal heterogeneity and drivers of biogeochemistry. In this dissertation, I demonstrate that water chemistry within the Delmarva wetlandscape is heterogeneous both within and between surface water and groundwater systems (Chapter 2). Surface water chemistry was primarily influenced by temporal factors (season and month), followed by local hydrology. In contrast, groundwater chemistry was strongly influenced by water level below ground surface and interaction with organic soil layers. These results are important in understanding both internal wetlandscape water chemistry dynamics and export of solutes such as dissolved organic matter (DOM) to adjacent river ecosystems. Further, these results suggest that local biological and hydrological factors strongly affect surface water chemistry in wetlands. To explore these factors, I used an observational approach to determine the role of larval amphibians on wetland biogeochemistry (Chapter 3) and employed high-resolution chemistry sensors to study the effect of hydrological changes on surface water dissolved organic matter concentrations (Chapter 4). Animal waste can contribute substantially to nutrient cycling and ecosystem productivity, yet little is known of the biogeochemical impact of animal excretion in wetland habitats. A common and abundant amphibian in Delmarva wetlands are wood frog (Lithobates sylvaticus) tadpoles. I found that wood frog tadpole aggregations elevated nutrient recycling, microbial metabolism, and carbon cycling in Delmarva wetlands. These results provide evidence for the functional and biogeochemical role of tadpole aggregations in wetland habitats, with important implications for ecosystem processes, biodiversity conservation, and ecosystem management. To further explore the role of hydrology on DOM concentrations, I utilized high-resolution fluorescent dissolved organic matter sensors (fDOM) and applied river solute transport frameworks and metrics to wetland catchments. I found that there was heterogeneity in wetland response to changing hydrology and that seasonality and potentially bathymetry influences fDOM concentrations. Together, these studies inform our understanding of wetlandscape heterogeneity and DOM export, as well as biological and hydrological drivers of biogeochemistry. / Doctor of Philosophy / Wetlands control the movement of nutrients and carbon at local, regional, and global scales. There is a large body of knowledge demonstrating the importance of wetlands to the transport of dissolved water constituents, such as dissolved organic matter (DOM) and nutrients. However, there is little information on what controls surface water chemistry in these wetland landscapes and less is known about belowground water chemistry. In this study I examined the role of water level, wetland shape, and time (i.e., year, month of the year, and season) on surface and groundwater chemistry in wetlands. I found that water chemistry was different between surface and groundwater and that differences were primarily due to seasons or months in surface water wetlands, while water level and flooding of organic matter-rich soil layers controlled groundwater chemistry. These results indicate that there are differences in water chemistry between surface water and groundwater that are controlled by unique drivers. These results also suggested that biological processes such as animal presence may influence wetland chemistry. To understand the role of animals in wetland chemistry, I studied the effect of wood frog (Lithobates sylvaticus) tadpole waste on nutrient concentrations in wetlands and found large tadpole groups are significant recyclers of nitrogen and phosphorous, which were used by microbes as nutrients, leading to enhanced leaf litter break-down in wetlands. These findings imply that tadpoles have an important role in wetland ecosystems by creating locations of enhanced nutrient and carbon cycling and that conservation of amphibian species may also preserve ecosystem processes in wetlands. Additionally, my initial study suggested that hydrology influences DOM concentrations in wetlands. I used high-frequency chemistry sensors to detect fluorescent dissolved organic matter (fDOM) concentrations, which represents a fraction of DOM. I found that relationships and patterns in fDOM concentration were complex, and that season and wetland shape were important in wetland DOM dynamics. Overall, this dynamic behavior across seasons and between wetlands indicates that wetland response to water levels can drive differences in water chemistry between wetlands and is important in our understanding of wetland response to storm events. The information gained from these studies is important in understanding how large wetland landscapes function and control movement of nutrients and carbon. Further, my research has uncovered the role of animal species in controlling nutrient and carbon cycling in wetland environments as well as the complex response of fDOM to water level changes in individual wetlands.
18

Effects of prescribed fire on Cope’s Gray Treefrog (Hyla chrysoscelis) across habitat scales and life stages

McDonald, Logan 01 January 2017 (has links)
Fire may alter both aquatic and terrestrial habitat used by all amphibian life stages, yet, our knowledge of its effects on amphibians is primarily limited to adult responses. I present an integrated approach to test the response of Cope’s Gray Treefrog (Hyla chrysoscelis) to fire by examining responses in tadpole performance and survivorship, adult abundance, and oviposition. Tadpoles raised with burned leaf litter had similar survival, but total mass and total length were 440% and 170% greater, respectively, for tadpoles raised in unburned litter. I assessed terrestrial and aquatic oviposition cues by embedding burned and unburned litter treatments within burned and unburned terrestrial plots. Oviposition was an order of magnitude higher in unburned plots, regardless of the litter treatment. This difference was not statistically significant or driven by adult abundance. My results indicate the need to explore the dynamic effects forest management practices can have on amphibians across life stages.
19

A Comparison of the Pectoral Spines in Virginia Catfishes

Duvall, Amanda Dawn 01 January 2007 (has links)
Catfish pectoral spines are an anti-predator defense mechanism. They can be bound or locked, making the fish harder to swallow, or used to produce distress calls by rubbing ridges on the dorsal process against a channel in the wall of the pectoral girdle. Growth of the pectoral spine and girdle were examined in relation to fish size within and across species that occur throughout central and eastern Virginia. These included blue catfish (Ictalurus furcatus), channel catfish (Ictalurus punctatus), white catfish (Ameiurus catus), brown bullheads (Ameiurus nebulosus), yellow bullheads (Ameiurus natalis), flathead catfish (Pylodictis olivaris), margined madtom (Noturus insignis), and tadpole madtom (Noturus gyrinus).Pectoral spines and girdles grow as catfish increase in size. In larger species spine length and weight increase nonlinearly with fish size, suggesting that maintaining spine dimensions becomes less important in bigger individuals less likely to suffer predation. The incidence of spine breakage also increases in larger fish. In smaller species spine length increases linearly in our samples (brown and yellow bullheads and margined and tadpole madtoms). In all species spine width increases linearly with total length. The spine base (dorsal process width and depth and dorsal-ventral length) grows linearly with total length in most species. However, measurements of the spine base increase nonlinearly in white catfishes, and dorsal process width increases nonlinearly in wild channel catfish although the increase was linear in cultured channel catfish.Girdle depth increased linearly with total length in all species except for wild channel catfish, and the ratio of coracoid to cleithrum depth varied among species. Pectoral girdle weight increased linearly with fish weight in blue catfish, cultured channel catfish, brown bullheads, and margined and tadpole madtoms. However, girdle weight, a major component of the body, increased nonlinearly in wild channel, white, yellow bullheads, and flathead catfishes. Cultured channel catfish had smaller pectoral spines and girdles than wild channels, a likely epigenetic response to predators. Catfish spines were identified to species, allowing determination of catfishes eaten by bald eagles (Haliaeetus leucocephalus) using spines collected near their nests. Bald eagles ate blue catfish (60%), channel catfish (27%), white catfish (9%), brown bullheads (4%) and yellow bullheads (0.5%). Madtom and flathead catfish were not consumed. Mean sizes captured were: Blue catfish (366 mm, 414 g), channel catfish (417 mm, 618 g), white catfish (320 mm, 591 g), brown bullheads (278 mm, 277 g) and yellow bullhead (203 mm, 192 g).
20

Ovlivňuje přítomnost invazní želvy růst pulců skokana hnědého? / Is the growth of brown frog`s tadpoles influenced by the presence of red-eared slides?

VODRÁŽKOVÁ, Magda January 2018 (has links)
An increasing amount of attention is devoted to studying the impact of non-native animal species on native species. Among other causes of ecosystem degradation, such as climate change, polution and habitat conversion, biological invasion is considered as one of the main causes of the decrease in biological diversity all over the world. In order to detect possible predation event, tadpoles use not only visual and mechanical stimuli, but also chemical one. The tadpoles respond to the certain chemicals to be a part of predator's secretions. In aquatic systems, chemical cues are a major source of information through which animals are able to assess the current state of their environment to gain information about local predation risk. Prey use chemicals released by predators to mediate a range of behavioural, morphological and life-history antipredator defences. Tadpoles swim significatnly less and also on a less direct trajectory in the presence of chemical cues released by a turtle Trachemys scripta. This article is focused on the influence of mentioned constraints on the dynamics and the time dynamics of the larval growth of Rana temporaria. The influence was judged by the impact on the tadpole's development. We anticipated a behavioral response to the predator, which would lead to various growth reactions during larval growth, the resulting body size after metamorphosis, but also in the development time of larval stage. The results indicate that tadpoles of Rana temporaria changed behaviour in the presence of Trachemys scripta. Tadpoles in the permanent presence of the turtle grew faster, metamorphosed earlier and the resulting size after metamorphosis was smaller than of the tadpoles who developed without presence of the predator. Mentioned reactions may affect the survival and fitness of a metamorphosed individual.

Page generated in 0.0801 seconds