21 |
Limitations to plant diversity and productivity in restored tallgrass prairieMcCain, Kathryn Nicole Schmitt January 1900 (has links)
Doctor of Philosophy / Department of Biology / John M. Blair / Approximately 96% of native tallgrass prairie in North America has been lost, which accentuates the need for effective methods to restore the structure and function of these degraded ecosystems. Many prairie restorations aim to restore grass and forb species in proportions reflecting plant species diversity in native prairie. A target grass-forb species mixture is typically chosen at the onset of restoration, but often, grasses become excessively dominant and forbs are underrepresented as the community develops. Several studies have examined the potential for increasing forb cover and diversity in newly restored grasslands, but few studies have assessed factors limiting forb cover and diversity in well-established grass-dominated prairie restorations. The primary objective of this research was to assess the potential for enhancing plant species diversity and productivity in an established grass-dominated prairie restoration by selective removals of dominant grass species, and by manipulating resources (soil nutrients, light availability) or mycorrhizal interactions.
A 7-year old grass-dominated restoration was used to evaluate plant and soil responses to manipulations in three separate studies. The first study examined the potential suppressive effects of dominant grasses on plant diversity by reducing the cover and biomass of two dominant grass species, Andropogon gerardii and Panicum virgatum. After 3 years, the removal of A. gerardii increased species richness and diversity, which was correlated with increased light availability, but not changes in soil resources. The second study examined the responses of restored grassland communities to long-term manipulation of soil resources (nutrient availability or soil depth), and to aboveground biomass removal via mowing. The long-term manipulation of soil resources did not alter plant species diversity, but nitrogen and light availability were important factors regulating plant productivity. The third study assessed the effects of manipulating arbuscular mycorrhizal (AM) fungi, through the use of either commercial inoculum or fungicide, on plant communities in restored prairie. Mycorrhizal suppression reduced grass productivity, suggesting that fungicide may be useful for enhancing diversity of restored prairies that are dominated by obligate mycotrophic grasses. In total, these studies suggest that competition between dominant grasses and subordinate forbs limits plant diversity in restored tallgrass prairie.
|
22 |
Contemporary land-use change structures carnivore communities in remaining tallgrass prairieWait, Kyle January 1900 (has links)
Master of Science / Department of Horticulture and Natural Resources / Adam A. Ahlers / The Flint Hills ecoregion in Kansas, USA, represents the largest remaining tract of native tallgrass prairie in North America. Anthropogenic landscape change (e.g., urbanization, agricultural production) is affecting native biodiversity in this threatened ecosystem. Our understanding of how landscape change affects spatial distributions of carnivores (i.e., species included in the Order ‘Carnivora’) in this ecosystem is limited. I investigated the influence of landscape structure and composition on site occupancy dynamics of 3 native carnivores (coyote [Canis latrans]; bobcat [Lynx rufus]; and striped skunk [Mephitis mephitis]) and 1 nonnative carnivore (domestic cat, [Felis catus]) across an urbanization gradient in the Flint Hills during 2016-2017. I also examined how the relative influence of various landscape factors affected native carnivore species richness and diversity. I positioned 74 camera traps across 8 urban-rural transects in the 2 largest cities in the Flint Hills (Manhattan, pop. > 55,000; Junction City, pop. > 31,000) to assess presence/absence of carnivores. Cameras were activated for 28 days in each of 3 seasons (Summer 2016, Fall 2016, Winter 2017) and I used multisession occupancy models and an information-theoretic approach to assess the importance of various landscape factors on carnivore site occupancy dynamics. Based on previous research in other ecosystems, I expected a negative relationship between both coyote and bobcat occurrence with increasing urban development but a positive relationship for domestic cat and skunk occurrence with increasing urban landcover. I also predicted grassland landcover to positively influence site occupancy for all carnivores except domestic cats. I expected that coyotes, the apex predator in this ecoregion, may limit domestic cat distributions through intraguild competition. Thus, I predicted a negative relationship between site occupancy of domestic cats and coyote occupancy probabilities. Because urban development results in habitat loss and fragmentation, I expected native species richness and diversity to decline with increased urban development. Coyotes had lower occupancy and colonization rates in areas with increased urban landcover. Bobcat occupancy was insensitive to urban landcover and colonization rates were greater in grassland landcover and row-crop agriculture fields. Site occupancy of bobcats was highly influence by forested areas and greater edge densities. Contrary to my hypothesis, striped skunk occupancy and colonization rates were negatively related to urban landcover. As expected, domestic cats were more likely to occur in and colonize sites with increased urban development and less likely to occur at sites with high coyote occupancy probabilities. Native carnivore species diversity and richness were negatively related to urban landcover. Occupancy dynamics of carnivores were shown to be influenced by landscape structure and composition as well as intraguild interactions. My results show urban landcover has a strong influence on the spatial distributions of carnivores in the northern extent of the Flint Hills.
|
23 |
If we build it, will they come? Insect communities as indicators of restoration in an urban prairie networkFinke, Amanda Nicole January 2019 (has links)
No description available.
|
24 |
The influence of habitat characteristics on grassland community composition and avian productivity in southern IllinoisGlass, Alex 01 December 2022 (has links)
Grassland birds are the most rapidly declining bird guild in North America, due in large part to extensive loss and fragmentation of grassland habitat resulting from the spread of agriculture and other human-dominated landscapes. Over the past several decades, grassland birds have increasingly become a guild of high conservation and management interest as their populations continue to decline and suitable grassland habitat becomes continually scarcer. Although studies investigating grassland bird responses to management actions and habitat structure are common, few studies are concerned with clarifying the mechanisms through which habitat structure may affect grassland birds. Filling this knowledge gap is critical for increasing our understanding of grassland bird ecology and improving the effectiveness of management and restoration actions for grassland birds. To address this knowledge gap, I took a uniquely holistic approach to traditional grassland bird-habitat studies by concurrently gathering data on multiple wildlife taxa that may interact with birds to examine how these different taxa respond to habitat characteristics across multiple spatial scales, and how those responses may in turn impact grassland birds. Research was conducted on 10 grassland sites at Burning Star State Wildlife Management Area in northeast Jackson County, Illinois, during the bird breeding season (May-July) from 2018 to 2021. My first five objectives were to determine the grassland habitat characteristics that were most highly associated with the following taxa: arthropods, an important food source for adult and nestling grassland birds; small mammals, which are occasional nest predators and an alternate prey source for more prolific nest predators; snakes; raccoons; and grassland birds. My final objective was to estimate the extent to which grassland bird habitat associations were mediated through nest predator abundance, alternate prey abundance, and food availability. In Chapter 2, I examined associations between grassland arthropod communities and habitat characteristics representing three spatial scales: local (within-patch vegetation structure and composition), patch (size, shape, edge composition), and landscape (landcover composition within a 400 m buffer). In addition to their relevance for grassland birds, arthropods play important functional roles in grasslands and are useful indicators of grassland health. I collected arthropod samples using pan traps in grassland patches at Burning Star, and used generalized linear mixed models to relate variation in arthropod biomass and diversity to habitat predictor variables. I found that arthropod biomass increased with vegetation height at the local scale and proportion of forest/shrub edge at the patch scale, while arthropod diversity responded only to local-scale variables, including a negative association with vegetation height and woody vegetation cover, and a positive association with forb cover. I conclude that local vegetation structure and composition are the main drivers shaping arthropod communities at Burning Star, and that limiting woody encroachment and increasing forb cover and variation in vegetation height within grassland patches may encourage arthropod abundance and diversity in tallgrass prairies. In Chapter 3, I estimated associations between small mammal abundance and habitat variables, again representing three spatial scales. I surveyed small mammal communities using a grid of 100 Sherman traps set out for three nights at each study site. I identified all captured individuals to genus, individually marked them with ear tags, and estimated abundance using a combination of Huggins P and C models in Program Mark and generalized linear mixed models in Program R. I found that small mammal abundance was positively related to vegetation density and negatively related to plant diversity, though variation in plant diversity affected Microtus voles more strongly than Peromyscus mice. At the landscape scale, small mammal abundance was positively associated with the amount of water surrounding a patch, and negatively associated with the amount of grassland surrounding a patch. Variation in small mammal community composition (proportions of Microtus vs Peromyscus) was mostly governed by differences in habitat structure at the landscape scale, rather than differences in vegetation structure at the local scale. I suggest that managers interested in influencing small mammal abundance in grasslands encourage dense vegetation growth by limiting disturbance if increased small mammal abundance is desired, or reduce vegetation density by increasing disturbance frequency to reduce small mammal abundance. Additionally, increasing plant diversity by sowing a high diversity of seeds may be an effective way to control Microtus vole populations. In Chapter 4, I estimated the habitat associations of snakes at Burning Star, focusing on the relative abundance of snakes among different grassland sites, as well as snake diversity and species-specific occupancy. Although snakes are prolific nest predators of grassland birds, they are also integral components of grassland systems, and there may be instances where managers and decision-makers wish to increase, rather than decrease, their abundance in grasslands. I found that snake community metrics were strongly and positively related to an increase in woody plant cover at the local (within-patch) scale. Snake relative abundance was also positively related to an increase in grass cover and a decrease in forb cover, though my occupancy results suggest that this was primarily driven by an increase in black kingsnakes (Lampropeltis nigra). At the patch scale, snake relative abundance and diversity were both positively related to the proportion of patch edge composed of roads. Habitat structure at the landscape scale had the smallest impact on snakes in this study, though the proportion of trees in the landscape was positively related to snake diversity. I suggested that managers and conservationists interested in manipulating snake abundance in grasslands focus on within-patch vegetation structure and composition. Decreasing woody cover in grasslands, or increasing the ratio of forbs to grasses, may reduce the presence of snakes, while maintaining a woody component could encourage both snake abundance and diversity. In Chapter 5, I estimated the habitat characteristics that were most strongly associated with raccoon abundance estimates in grassland patches at Burning Star. Raccoons have become increasingly important avian nest predators in midwestern grasslands due to rampant habitat fragmentation. I estimated raccoon abundance using an occurrence index from a series of baited trail cameras located in grassland sites. I found no convincing evidence of raccoon abundance being influenced by local scale habitat structure, beyond a weak association with vegetation height. At the patch scale, raccoon abundance was positively related to the proportion of patch edge composed of roads. At the landscape scale, raccoon abundance was negatively related to grassland, and positively related to water, within 400 meters of a grassland patch. I recommended that managers concerned with minimizing the presence of raccoons in grasslands should limit roads along grassland perimeters, maximize the proportion of grassland in the landscape surrounding a grassland patch, and avoid planning a grassland restoration in close proximity to open water if possible. In Chapter 6, I estimated the habitat characteristics that were most strongly associated with daily nest survival, nest density, and abundance of Dickcissels (Spiza americana), Field Sparrows (Spizella pusilla), and Common Yellowthroats (Geothlypis trichas), but also considered responses of all grassland bird species combined. I considered habitat characteristics representing four spatial scales: nest site, within-patch, patch, and landscape, though the nest site scale was only considered for nest survival analyses. I found that Dickcissels, an obligate grassland species, exhibited the strongest response to fire, as nest density drastically improved after previously undisturbed grasslands were burned. Dickcissel abundance was positively related to agriculture at the landscape scale and negatively related to woody cover. Field sparrows demonstrated a preference for woody cover and proximity to forests and shrublands, and Common Yellowthroats were positively associated with forb cover. Both Field Sparrow and Common Yellowthroat nest survival increased with greater distance from an edge, though no edge effect was detected for Dickcissel nest survival. All bird species benefitted from increased plant diversity and greater patch size. All species also responded negatively to vegetation height or litter depth, suggesting that fire, which reduces vegetation biomass and litter, may indirectly benefit the facultative grassland birds of Burning Star in addition to Dickcissels. In Chapter 7, I used structural equation models and data gathered in the previous five chapters to estimate whether the effects of habitat structure on breeding Field Sparrows is mediated through changes in predator (snake and raccoon) abundance, alternate prey availability, or arthropod biomass. I used Field Sparrows as the focal species for this chapter because they were the most common grassland bird in my dataset. I found no evidence of nest survival or nest density of Field Sparrows being directly influenced by nest predator abundance, alternate prey, or arthropod biomass, although habitat characteristics associated with increased nest survival were also associated with greater arthropod biomass and reduced predator abundance. I suggested that habitat structure at Burning Star may primarily impact breeding Field Sparrows through direct means, such as influencing nest concealment or foraging efficiency. These results also suggest that nest success and nest density are decoupled in this study area, so Field Sparrows may be preferentially selecting nest sites with structural characteristics that do not increase nest survival. Ultimately, my findings from this study indicate that while predator avoidance and food provisioning likely play an important role in determining nest survival for grassland birds, predator abundance and arthropod biomass may not necessarily predict predation risk and foraging efficiency to the extent that is often assumed.
|
25 |
Parasitoid Communities of Remnant and Constructed Prairie Fragments in Western OhioSheaffer, Michael Drew 02 June 2016 (has links)
No description available.
|
26 |
Morphological and physiological traits as indicators of drought tolerance in tallgrass prairie plantsTucker, Sally Sue January 1900 (has links)
Master of Science / Department of Biology / Jesse B. Nippert / The Konza Prairie in northern Kansas, USA contains over 550 vascular plant species; of which, few have been closely studied. These species are adapted to environmental stress as imposed by variable temperature, precipitation, fire, and grazing. Understanding which plant traits relate to drought responses will allow us to both predict drought tolerance and potential future shifts in plant community composition from changes in local climate. Morphological and physiological measurements were taken on 121 species of herbaceous tallgrass prairie plants grown from seed in a growth chamber. Gas exchange measurements including maximum photosynthetic rate, stomatal conductance to water vapor, and intercellular CO[subscript]2 concentration were measured. All plants were exposed to a drought treatment and were monitored daily until stomatal conductance was zero. At this point, critical leaf water potential (Ψ[subscript]crit), an indicator of physiological drought tolerance was assessed. Other measurements include root length, diameter, volume, and mass, leaf area, leaf tissue density, root tissue density, and root to shoot ratio. Traits were compared using pair-wise bivariate analysis and principal component analysis (PCA). A dichotomy was found between dry-adapted plants with thin, dense leaves and roots, high leaf angle, and highly negative Ψ[subscript]crit and hydrophiles which have the opposite profile. A second axis offers more separation based on high photosynthetic rate, high conductance rate, and leaf angle, but fails to provide a distinction between C[subscript]3 and C[subscript]4 species. When tested independently, grasses and forbs both showed drought tolerance strategies similar to the primary analysis. Matching up these axes with long term abundance data suggests that species with drought tolerance traits have increased abundance on Konza, especially in upland habitats. However, traits that relate to drought tolerance mirror relationships with nutrient stress, confounding separation of low water versus low nutrient strategies. My results not only illustrate the utility of morphological and physiological plant traits in classifying drought responses across a range of species, but as functional traits in predicting both drought tolerance in individual species and relative abundance across environmental gradients of water availability.
|
27 |
How does your prairie (re)grow?: Interactions of seed additions with resource availability, heterogeneity, and disturbance on recruitment and diversity in a restored tallgrass prairieStanton, Nicole Lynn January 1900 (has links)
Master of Science / Division of Biology / John M. Blair / Temperate grasslands are among the most threatened biomes in the world, with the largest historical losses due to conversion to agricultural land. While much of this biome has already been converted, there is concern the last remaining remnants in North America will be converted in response to increasing demand for crops used for ethanol production. Thus, restoring grasslands post-anthropogenic disturbance is increasingly important for conserving grassland biodiversity. Two major challenges for prairie restorations are establishing the many subdominant and rarer species found in native prairie, and offsetting the typical decline in richness and diversity over time as restorations age. Repeated seed addition of targeted species is commonly used to override low and declining plant richness and diversity. While this is generally effective early in restoration (i.e., as communities are establishing), its effectiveness in later stages (i.e., when established communities are often losing diversity) remains unknown. I investigated plant community responses to combinations of resource manipulations and disturbances coupled with a seed addition in a 15-yr old restored grassland to test the hypothesis that spatial resource heterogeneity increases the rate of colonization into established prairie restoration communities. Seeds were added to a long-term restoration experiment involving soil depth manipulations (deep, shallow) crossed with nutrient manipulations (reduced N, ambient N, enriched N). Seedling emergence was generally low and only 8 of the 14 forb species added were detected in the first growing season. I found no effect of increased resource heterogeneity on the abundance or richness of seedlings. There was a significant nutrient effect (p<0.1, α=0.1) on seedling abundance, with higher emergence in the enriched N than the ambient N treatment. I also found unexpected nutrient effects on richness, diversity and Mean C (Mean C = Σ CoCi*Ai, where CoC=Coefficient of Conservatism and A=relative abundance of the ith species). All values, except Mean C, were higher in the enriched N treatment than in either the reduced or ambient N treatments. Mean C was lowest in the enriched N treatment, and highest in the whole-plot control, suggesting that the majority of species contributing to higher richness and diversity in the enriched N treatment were “weedier” species. In a separate experiment, I found no effect of small-scale disturbances (aboveground biomass removal or soil disturbance) on seedling abundance or seedling richness. I did find a marginal effect of disturbance type on seedling richness (p=0.11, α=0.1), with higher seedling richness in the soil disturbance than the aboveground biomass removal treatment. I did not find any disturbance effects on community response variables. These results indicate that recruitment from seed additions into well-established restored communities is relatively low in the first year following a seed addition, regardless of resource availability and heterogeneity. Follow-up studies to determine recruitment rates in subsequent years are needed to elucidate whether recruitment responses are driven more by individual species differences or by environmental mechanisms.
|
28 |
Plant responses to grazer-mediated habitat alterations in tallgrass prairieZahner, Anna January 1900 (has links)
Master of Science / Department of Biology / David C. Hartnett / The effects of bison activities on forb diversity and cover have been well-established, but less is known about how forb life history is altered by bison-mediated habitat changes. This study had three main objectives: 1) to evaluate the hypothesis that release from aboveground competition with grasses may contribute to the increased cover and diversity of forbs in prairie grazed by bison relative to ungrazed prairie, 2) to determine whether differences in forb reproductive effort between grazed and ungrazed habitats were size-dependent, and 3) to look for evidence of a trade-off between allocation to vegetative and sexual reproduction.
The growth, biomass allocation, and sexual reproduction of six common unpalatable perennial species were measured and compared between bison-grazed and ungrazed tallgrass prairie burned at 2-year intervals: Ambrosia psilostachya, Artemisia ludoviciana, Baptisia australis, Psoralidium tenuiflorum, Solidago canadensis, and Vernonia baldwinii. Vegetative reproduction was also measured for B. australis¸ S. canadensis, and V. baldwinii. Light availability, canopy density and height, and percent cover of neighboring plants were measured in each studied individual’s immediate neighborhood and compared between habitats to establish the possibility of differing aboveground competition.
Aboveground competition may be lower in bison-grazed habitats, as evidenced by differences in habitat characteristics and plant performance found in this study. In bison-present habitats, sexual reproduction was elevated for all six species and average plant size was greater for all species except A. psilostachya. Vegetative reproduction was not clearly different between habitats for all three species examined. Sexual reproduction increased with size for all species, and the relationship differed significantly between habitats for all species except A. psilostachya. Allocation to vegetative reproduction was not generally related to aboveground biomass, nor was there a clear trade-off between allocation to vegetative and sexual reproduction.
The results of this study provide evidence that release from aboveground competition with grasses promotes the growth and sexual reproduction of the studied species of forb, and that differences in sexual reproduction are not entirely size-dependent. Patterns in allocation to vegetative reproduction were less clear and were not clearly tied to sexual reproductive allocation.
|
29 |
Dark septate fungal endophytes from a tallgrass prairie and their continuum of interactions with host plantsMandyam, Keerthi January 1900 (has links)
Doctor of Philosophy / Department of Biology / Ari M. Jumpponen / Dark septate endophytes (DSE) are darkly pigmented microfungal ascomycetes commonly observed in the healthy plant roots. Studying the functional roles of DSE is challenging as fundamental information about their identity, nutritional requirements, host range or host preference are lacking. Objective 1: root colonizing fungi were isolated from Konza plants roots and DSE fungi were identified by testing Koch’s postulates using leek plants. Periconia macrospinosa and Microdochium sp., were identified as DSE as they produced microsclerotia and chlamydospores in the root cortex. Select DSE were tested for their enzymatic capabilities and ability to utilize nitrogen sources: fungi tested positive for amylase, cellulase, polyphenol oxidases and gelatinase. Periconia isolates utilized organic and inorganic nitrogen suggesting facultative biotrophic and saprotrophic habits. Objective 2: a Microdochium isolate and three Periconia isolates were screened on 16 plant species (six native grasses and forbs, four crops) in a resynthesis system to test host range. DSE colonized all plant species, albeit to varying degrees. Host biomass and nutritional levels to DSE colonization varied within and among host species confirming the broad host range. Based on % responsiveness to DSE colonization, a metric similar to ‘mycorrhizal dependency’, grasses responded positively, while forbs and crops responded negatively. To test this observed ‘host preference’ under natural conditions, Konza roots from seven grass and nine forb species were surveyed for DSE colonization. Grasses hosted 50% greater DSE than forbs, supporting the broad host range and host preference of DSE fungi. Objective 3: three conspecific Arabidopsis ecotypes, Col-0, Cvi-0 and Kin-1 were inoculated with 25 P. macrospinosa isolates in resynthesis system. The three ecotypes responded differently to inoculation: Col-0 and Cvi-0 responded negatively, while Kin-1 response was neutral. Despite the negative or neutral response, each ecotype responded positively to one or two isolates. The outcomes were along the mutualism-parasitism continuum precluding an unambiguous assignment to any particular life-style. This study shows that the outcomes along this continuum are dictated by host and fungal genotypes. However, the more important question about their function remains. Additional studies with Arabidopsis microarrays are likely to provide unique insights into the potential roles of DSE.
|
30 |
THE EFFECTS OF P FERTILIZER ADDITION ON P TRANSFORMATIONS ON HIGH-P FIXING AND GRASSLAND SOILSPierzynski, Joy January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Ganga M. Hettiarachchi / Although phosphorus (P) is an essential nutrient for the growth of plants, it is one of the most limiting nutrients in terms of availability as a high proportion of applied P rapidly transforms into insoluble forms with low solubility in soils. To further understand the fate of P applied to soils, two separate but related studies using three high P-fixing soil types each were used for which the objectives were to investigate the mobility, availability, and reaction products from two granular and one liquid P fertilizer alone or plus a fertilizer enhancement product. Energy dispersive spectroscopy showed a substantial amount of P remained in the granule following a 5-week incubation. At the end of the 35-day incubation period there was evidence that the fluid fertilizer was superior over the granular sources in terms of enhanced diffusion and extractability of P for three calcareous soils with varying levels of CaCO3. Phosphorus x-ray absorption near-edge structure (XANES) spectroscopy results in conjunction with resin-extractable P indicated a strong negative correlation between Ca-P solids formed and P extractability, suggesting that degree of Ca-P formation limits P solubility. For the three acidic P-fixing soils the results were complex. In two out of three acid soils, liquid P treatments diffused farther from the application point than the granular treatments. Phosphorus XANES results suggested that Fe-P or Al-P interactions control the overall P solubility. Integration of pH, resin extractable-P and XANES results suggested the P retention mechanism was either dominated by adsorption or precipitation depending on soil pH. More acidic soil conditions favored precipitation.
The objectives of the third study were to observe how long-term (14 years) addition of P with or without N influences the inorganic and organic P pools in a native grassland soil using sequential fractionation, XANES, and 31P-nuclear magnetic resonance (NMR) spectroscopy. The overall results suggested that P and N fertilization and associated changes in plant productivity induced significant changes in soil P pools such as Ca-P, phytic acid, monoesters, and residual forms of P. The addition of P alone induced formation of inorganic P forms while the addition of P and N induced transformation of residual P forms into more labile and/or organic P forms.
|
Page generated in 0.0543 seconds