• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Models and Algorithms for Sorting Permutations with Tandem Duplication and Random Loss

Hartmann, Tom 25 April 2019 (has links)
A central topic of evolutionary biology is the inference of phylogeny, i. e., the evolutionary history of species. A powerful tool for the inference of such phylogenetic relationships is the arrangement of the genes in mitochondrial genomes. The rationale is that these gene arrangements are subject to different types of mutations in the course of evolution. Hence, a high similarity in the gene arrangement between two species indicates a close evolutionary relation. Metazoan mitochondrial gene arrangements are particularly well suited for such phylogenetic studies as they are available for a wide range of species, their gene content is almost invariant, and usually free of duplicates. With these properties gene arrangements of mitochondrial genomes are modeled by permutations in which each element represents a gene, i. e., a specific genetic sequence. The mutations that shape the gene arrangement of genomes are then represented by operations that rearrange elements in permutations, so-called genome rearrangements, and thereby bridge the gap between evolutionary biology and optimization. Many problems of phylogeny inference can be formulated as challenging combinatorial optimization problems which makes this research area especially interesting for computer scientists. The most prominent examples of such optimization problems are the sorting problem and the distance problem. While the sorting problem requires a minimum length sequence of rearrangements that transforms one given permutation into another given permutation, i. e., it aims for a hypothetical scenario of gene order evolution, the distance problem intends to determine only the length of such a sequence. This minimum length is called distance and used as a (dis)similarity measure quantifying the evolutionary relatedness. Most evolutionary changes occurring in gene arrangements of mitochondrial genomes can be explained by the tandem duplication random loss (TDRL) genome rearrangement model. A TDRL consists of a duplication of a consecutive set of genes in tandem followed by a random loss of one copy of each duplicated gene. In spite of the importance of the TDRL genome rearrangement in mitochondrial evolution, its combinatorial properties have rarely been studied. In addition, models of genome rearrangements which include all types of rearrangement that are relevant for mitochondrial genomes, i. e., inversions, transpositions, inverse transpositions, and TDRLs, while admitting computational tractability are rare. Nevertheless, especially for metazoan gene arrangements the TDRL rearrangement should be considered for the reconstruction of phylogeny. Realizing that a better understanding of the TDRL model is indispensable for the study of mitochondrial gene arrangements, the central theme of this thesis is to broaden the horizon of TDRL genome rearrangements with respect to mitochondrial genome evolution. For this purpose, this thesis provides combinatorial properties of the TDRL model and its variants as well as efficient methods for a plausible reconstruction of rearrangement scenarios between gene arrangements. The methods that are proposed consider all types of genome rearrangements that predominately occur during mitochondrial evolution. More precisely, the main points contained in this thesis are as follows: The distance problem and the sorting problem for the TDRL model are further examined in respect to circular permutations, a formal concept that reflects the circular structure of mitochondrial genomes. As a result, a closed formula for the distance is provided. Recently, evidence for a variant of the TDRL rearrangement model in which the duplicated set of genes is additionally inverted have been found. Initiating the algorithmic study of this new rearrangement model on a certain type of permutations, a closed formula solving the distance problem is proposed as well as a quasilinear time algorithm that solves the corresponding sorting problem. The assumption that only one type of genome rearrangement has occurred during the evolution of certain gene arrangements is most likely unrealistic, e. g., at least three types of rearrangements on top of the TDRL rearrangement have to be considered for the evolution metazoan mitochondrial genomes. Therefore, three different biologically motivated constraints are taken into account in this thesis in order to produce plausible evolutionary rearrangement scenarios. The first constraint is extending the considered set of genome rearrangements to the model that covers all four common types of mitochondrial genome rearrangements. For this 4-type model a sharp lower bound and several close additive upper bounds on the distance are developed. As a byproduct, a polynomial-time approximation algorithm for the corresponding sorting problem is provided that guarantees the computation of pairwise rearrangement scenarios that deviate from a minimum length scenario by at most two rearrangement operations. The second biologically motivated constraint is the relative frequency of the different types of rearrangements occurring during the evolution. The frequency is modeled by employing a weighting scheme on the 4-type model in which every rearrangement is weighted with respect to its type. The resulting NP-hard sorting problem is then solved by means of a polynomial size integer linear program. The third biologically motivated constraint that has been taken into account is that certain subsets of genes are often found in close proximity in the gene arrangements of many different species. This observation is reflected by demanding rearrangement scenarios to preserve certain groups of genes which are modeled by common intervals of permutations. In order to solve the sorting problem that considers all three types of biologically motivated constraints, the exact dynamic programming algorithm CREx2 is proposed. CREx2 has a linear runtime for a large class of problem instances. Otherwise, two versions of the CREx2 are provided: The first version provides exact solutions but has an exponential runtime in the worst case and the second version provides approximated solutions efficiently. CREx2 is evaluated by an empirical study for simulated artificial and real biological mitochondrial gene arrangements.
2

Variation in length of proteins by repeats and disorder regions

Sagit, Rauan January 2013 (has links)
Protein-coding genes evolve together with their genome and acquire changes, some of which affect the length of their protein products. This explains why equivalent proteins from different species can exhibit length differences. Variation in length of proteins during evolution arguably presents a large number of possibilities for improvement and innovation of protein structure and function. In order to contribute to an increased understanding of this process, we have studied variation caused by tandem domain duplications and insertions or deletions of intrinsically disordered residues. The study of two proteins, Nebulin and Filamin, together with a broader study of long repeat proteins (&gt;10 domain repeats), began by confirming that tandem domains evolve by internal duplications. Next, we show that vertebrate Nebulins evolved by duplications of a seven-domain unit, yet the most recent duplications utilized different gene parts as duplication units. However, Filamin exhibits a checkered duplication pattern, indicating that duplications were followed by similarity erosions that were hindered at particular domains due to the presence of equivalent binding motifs. For long repeat proteins, we found that human segmental duplications are over-represented in long repeat genes. Additionally, domains that have formed long repeats achieved this primarily by duplications of two or more domains at a time. The study of homologous protein pairs from the well-characterized eukaryotes nematode, fruit fly and several fungi, demonstrated a link between variation in length and variation in the number of intrinsically disordered residues. Next, insertions and deletions (indels) estimated from HMM-HMM pairwise alignments showed that disordered residues are clearly more frequent among indel than non-indel residues. Additionally, a study of raw length differences showed that more than half of the variation in fungi proteins is composed of disordered residues. Finally, a model of indels and their immediate surroundings suggested that disordered indels occur in already disordered regions rather than in ordered regions. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 4: Manuscript.</p>
3

Algorithms for Characterizing Structural Variation in Human Genome

Yavaş, Gökhan 20 July 2010 (has links)
No description available.

Page generated in 0.0978 seconds