• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling the behavior of the Linearly Tapered Slot Antenna

Kelly, Thomas P. 12 1900 (has links)
Approved for public release; distribution is unlimited / The Linearly Tapered Slot Antenna (LTSA) had been investigated and developed experimentally; its applications have primarily been based on empirical designs. An accurate theoretical model based on Moment Methods (MM) is developed here to study the radiation characteristics of the LTSA. Using the MM solutions to the reaction integral equation, this thesis presents an analysis to model and explain the LTSA behavior. The effects of variable design parameters on radiation patterns are studied. Discussion is augmented by relating predicted radiation patterns to calculated current distributions on the antenna surface. Conclusions are made regarding optimum designs for the LTSA. Relevant observations are made concerning the extensive computational tasks and the computer resources required for the MM model. / http://archive.org/details/modelingbehavior00kell / Major, United States Army
2

K-band Phased Array Feed (KPAF) Receiver Imaging System

Locke, Lisa Shannon 29 September 2014 (has links)
Astronomy large-scale surveys require instrumentation to minimize the time required to complete observations of large sections of the sky. Optimizing receiver systems has been achieved through reducing the system temperature primarily by advances in low-noise amplifier technology to a point that the internally generated noise is now fast approaching the quantum limit. Instead, reflector-coupled focal plane arrays are now used to increase the field of view (FoV) by employing either multi-element horn feeds or phased array feeds. Widely spaced (2-3 wavelengths diameter) horn feeds inefficiently sample the available focal plane radiation, thus requiring multiple imaging passes. Alternatively, a more efficient method is to use a narrow element (0.5 wavelengths diameter) phased array feed with a beamformer to produce overlapping beams on the sky, fully Nyquist sampling the focal plane with a single pass. The FoV can be further increased with additional phased array feed (PAF) antenna-receiver modules adding to the contiguous fully sampled region. A 5 x 5 K-band (18 - 26 GHz) single polarization modular PAF incorporating an antenna array of planar axially symmetric elements is designed, simulated, manufactured and tested. Each narrow width tapered slot antenna element has an independent receiver chain consisting of a cryogenic packaged monolithic microwave integrated circuit (MMIC) GaAs amplifier and a packaged MMIC down converting mixer. Synthesized beams and beamformer characteristics are presented. The PAF imaging system performance is evaluated by survey speed and compared to the industry standard, the single pixel feed (SPF). Scientifically, K-band is attractive because it contains numerous molecular transitions, in particular the rotation-inversion lines of ammonia. These transitions are excited in dense gas, and can be used to directly measure kinetic temperatures and velocities of protostars throughout the Galaxy. Depending on the line detected, gas of different temperatures can be probed. It is concluded that even with a higher system temperature, a PAF with sufficient number of synthesized beams can outperform a SPF in imaging speed by more than an order of magnitude. / Graduate
3

Compact-size linearly tapered slot antenna for portable ultra-wideband imaging systems

Zhu, F., Gao, S., Ho, A.T.S., See, Chan H., Abd-Alhameed, Raed, Li, J., Xu, J. 10 August 2012 (has links)
No / A compact-size asymmetrical linearly tapered slot antenna required for portable ultra-wideband (UWB) imaging systems is presented. The total antenna size is reduced compared with the conventional linearly tapered slot antenna by using a triangular slot on the left-hand side of the tapered-shaped radiator, whereas introducing a corrugated pattern of cuts on the right side. The antenna operates over a wide bandwidth extending from 3.1 to 10.6 GHz with a maximum gain of 8.5 dBi. Stable radiation patterns are observed across the operational bandwidth, with cross-polarization levels below 20 dB. The realized antenna structure occupies a volume of 35 x 36 x 0.8 mm3, and possesses the essential time domain fidelity needed for UWB imaging applications. (c) 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.

Page generated in 0.0768 seconds