• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die elektrolytische Oxydation der Weinsäure

Sihvonen, Väinö I. January 1921 (has links)
Univ., Diss--Helsinki.
2

Chiral and racemic calix[6]arenes and their self-assembly /

Hayes, Monty, January 2008 (has links)
Thesis (M.S.)--Texas State University--San Marcos, 2008. / Vita. Supplemental material: leaves 72-121. Includes bibliographical references (leaves 122-125). Also available on microfilm.
3

Studies towards the total synthesis of isoavenaciolide and the development of the amino tartrate aldol reaction

Wade, Charles January 2001 (has links)
No description available.
4

Studies towards metal-complex catalyzed epoxidation. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Leung, Chi Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 81-89). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese.
5

Thermodynamic and structural studies of aqueous chelating agents and their metal complexes at various temperatures and pressures : diethylenetriaminepentaacetic acid (DTPA) and tartaric acid /

Xie, Wei, January 1999 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 1999. / Bibliography: leaves 147-156.
6

Nouveaux monomères biosourcés à haute rigidité à destination des revêtements polyesters / Development and exploitation of new high rigidity biobased monomers

Gouteyron, Antoine 19 November 2015 (has links)
Les résines polyesters sont des composants présents dans une majorité des revêtements et matériaux utilisés aujourd'hui. Ils sont obtenus par polycondensation de polyols, polyacides et monoacides. Les réglementations évoluant (REACH) et le public étant de plus en plus sensible à l'origine et l'impact des produits qu'il consomme, la substitution des produits pétrosourcés vers des matières premières renouvelables semble évidente. De nouveaux polyesters, composés majoritairement de monomères biosourcés, ont donc été synthétisés. L'acide L-(+)-tartrique a été principalement étudié, ce monomère quadri-fonctionnel étant peu utilisé dans la chimie des matériaux bien que disponible en grandes quantités et peu coûteux. Afin de caractériser les polyesters, différents tests utilisés dans l'industrie ont été mis en place, les caractéristiques physico-chimiques pouvant varier d'une application à l'autre. Différents mécanismes de réticulation ont également été explorés afin d'adapter les polyesters aux contraintes de résistance et de séchage requises. Ces mécanismes incluent la réaction entre les hydrazides et les méthyles cétones ainsi que celle des dérivés du Bore et des hydroxyles à température ambiante. La solubilité des polyesters synthétisés a également été étudiée afin d'obtenir un produit soluble en phase aqueuse capable de devenir insoluble après réticulation et séchage / Polyester binders are the main components of the coatings and materials used nowadays. They are obtained by the condensation of polyols, polyacids and monoacids. Evolving regulations (REACH) and the public being increasingly sensitive to the origin and impact of the products it consumes, petro based compounds substitution to renewable raw materials seems obvious. New polyesters, mainly composed of biobased monomers were therefore synthesized. The L-(+)-tartaric acid was mainly studied, this quad-functional monomer being barely used in materials chemistry, although available in large quantities and inexpensive. To characterize polyesters, various tests used in the industry have been established, the physicochemical characteristics may vary from one application to another. Different crosslinking mechanisms have also been explored to adapt polyesters constraints of resistance and drying. These mechanisms include the reaction between the hydrazide and methyl ketones, as well as the derivatives of Boron and hydroxyl at room temperature. The solubility of the synthesized polyesters was also studied in order to obtain a water soluble material capable of becoming insoluble after crosslinking and drying
7

Ion Exchangers In The Recovery Of Tartaric Acid From Aqueous Solutions

Basaran, Tolga Yener 01 July 2006 (has links) (PDF)
Tartaric acid is a dicarboxylic acid naturally present in grapes, and has many application areas with its salts. It can be produced synthetically, manufactured as a by-product in wine industry, or can be recovered by electrodialysis and solvent extraction methods. Since, ion exchange is one of the oldest processing techniques for the recovery and purification of valuable materials, it can be applied to obtain this valuable organic acid. In this study it is aimed to investigate the effects of resin basicity, initial concentration, and initial pH of the solution on ion exchange equilibrium. The model tartaric acid solutions were prepared for the equilibrium analysis with two different anion exchange resins in a batch type system. A shaker bath at 28 oC with 300-rpm agitation rate was used. The weakly basic resin Lewatit MP62, and strongly basic resin Lewatit M511, which are in polystyrene structure, was obtained from the producer Bayer AG. In the analysis, Shimadzu PDA Detector at 210 nm with Waters Atlantis dC18 column was used. 20 mM NaH2PO4 at pH = 2.7 was introduced to the HPLC as the mobile phase at 0.5 ml/min flow rate. In the investigation of the resin basicity, MP62 presented better performance than M511. The equilibrium experiments were performed at three different initial acid concentrations (0.01, 0.02, and 0.10 M) for both resin, and in the pH ranges pH &lt / pKa1, pKa1 &lt / pH &lt / pKa2, and pKa2 &lt / pH for weakly basic resin, and in the pH ranges pH &lt / pKa1, pKa1 &lt / pH &lt / pKa2 for strongly basic resin at each concentration. Results show that the pH of the solution is a more important parameter than the initial concentration that affects the ion exchange equilibrium. Also, Langmuir and Freundlich isotherms were plotted, and it was shown that they were in good agreement with the experimental data especially for the systems that are at low total ion concentrations.
8

New investigations into the Uluburun resin cargo

Stern, Ben, Heron, Carl P., Tellefsen, T., Serpico, M. January 2008 (has links)
Resin found within Canaanite amphorae from the Late Bronze Age shipwreck discovered off the coast of southwest Turkey at Uluburun has previously been identified as Pistacia sp. Although evidence from Egypt suggests that this resin was in high demand and typically transported in such amphorae, it has also been proposed that the amphorae contained wine, with the resin used to seal the interior surfaces and to flavour and/or preserve the wine. To attempt to resolve this question, we have analysed five samples of pistacia resin found in amphorae from the shipwreck using a range of analytical techniques which have used in the past for the analysis of wine residues: spot tests, FT-IR, and HPLC-MS-MS. As well as the archaeological samples, we have analysed modern samples of pistacia resin, leaves and fruit to determine the effectiveness of each technique and to exclude the possibility of false positive results. In addition to the analyses for wine we also detail analysis (GC-MS) of the terpenoids for the purpose of further molecular characterisation of the resin. Bulk stable isotope analysis was used in comparison with similar resins to attempt to identify the geographical origin of the resin.
9

Transition metal complexes of bis(phosphorus) donor ligands derived from multifunctional diols synthesis, isomerization, cation binding, and catalysis /

Owens, Samuel Britt. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Additional advisors: Houston Byrd, Chris Lawson, Sadanandan Velu, Charles Watkins. Description based on contents viewed Feb. 9, 2009; title from PDF t.p. Includes bibliographical references.
10

Synthesis and Study of Chemo-Hydrothermally Derived Water-Soluble Chitosan and Chiosan-Metal Oxide Composites

Basumallick, Srijita 01 January 2014 (has links)
Chitosan (CS) is a man-made sugar based biopolymer derived from chitin, the second most abundant natural polymer after cellulose. Chitin is sourced from crustacean species such as shrimps and crabs. The chemical structure of chitin contains N-Acetyl D-glucosamine monomer units which forms CS upon deacetylation. In CS, ?-(1-4) linked D-glucosamine units are randomly distributed. Approximately 75% - 80% sugar units contains primary amine groups in commercially available low molecular weight CS. Biodegradability, low toxicity, mucoadhesive and transfecting properties of CS polymer are attractive for applications as oral and nasal drug delivery systems. Chitosan polymer is water insoluble at neutral pH. To solubilize CS, dilute mineral acid (such as hydrochloric acid and nitric acid) or organic acid (such as acetic acid) is often used. CS contains both hydroxyl and primary amine groups in its structure. In acidic solution, the amine functional groups become protonated (positively charged). Positively charged CS remains stable only in low pH condition due to electrostatic repulsion of charged polymer segments. Therefore, by using a suitable anionic (negatively charged) cross-linker, stable CS particles (such as nanoparticles and microspheres) can be prepared. This is popularly known as ionic gelation method. Extensive studies have been done on the synthesis of drug loaded CS particles where particle integrity is maintained by ionic gelation using tripolyphosphate (TPP, an anionic cross-linker). Drug encapsulated CS-TPP composite particles are shown to maintain biodegradability and biocompatibility. The CS-TPP composite particles exhibits very limited dispersibility at neutral pH conditions specifically in neutral buffered conditions. A number of biomedical applications (including systemic drug formulations) however demands buffer-stable CS composite particles for achieving optimal therapeutic outcome. To overcome the above dispersibility issues, CS polymer and CS particles units have been chemically modified using water soluble motifs (such as water soluble polymer or ligands). This approach is very cumbersome and usually involves multiple purification steps. Chemical modification of natural CS chain introduces risks of compromising biodegradability and biocompatibility. Therefore, there is a strong need for developing a straightforward method of making water soluble CS and CS particles. Chapter 1 of this dissertation presents an overview of the CS polymer, various applications of CS polymers, methods of making CS polymers and CS particles, current limitations of synthesis methods for preparing stable chitosan particles at neutral pH conditions and finally delineates the scope of the proposed research work. Chapter 2 describes development of chemo-hydrothermal synthesis method for producing water soluble CS polymer and water dispersible CS composite particles. In this method, a chemical (depolymerizing agent) is used to treat CS polymer in a hydrothermal (high temperature and high pressure) condition. Two types of depolymerizing agents have been used, an inorganic acid (e.g. hydrochloric acid, HCl) and a bicarboxylic organic acid (e.g. tartaric acid, TA). In both cases, 100% depolymerized CS polymer was obtained. Chemical characteristics of the depolymerized CS were comparable to acid solubilized CS. CS polymer exhibits weak fluorescence. Interestingly, hydrothermally depolymerized CS shows strong fluorescence properties irrespective of the nature of depolymerizing agent used. TA not only depolymerized CS but also formed CS-TA composite particulate structures in solution via self-assembly. The CS-TA composite particles are stable in a wide pH range from 5 to 11. Detailed spectroscopic and microscopic studies have been done to understand the basic mechanism of particle formation and increase in fluorescence properties (i.e. structure-property relationship). Usefulness of CS-TA in solubilizing water-insoluble cargos (such as fluorescein isothiocyanate, FITC) has been demonstrated. Chapter 3 is focused on hydrothermal synthesis of mixed-valence copper (Cu) oxide loaded CS-TA composite particles and their characterization. Crystalline Cu oxide nanoparticles were coated with the CS-TA layer. Water dispersibility of Cu oxide greatly improved upon coating with CS-TA material. To demonstrate catalytic activity of Cu-oxide loaded CS-TA film in sequestering carbon dioxide (CO2), an electrochemical setup was used. Electrochemical reduction of CO2 was successfully demonstrated. It was observed that CS-TA environment not only maintained catalytic properties of Cu oxide but also allowed solution processing of Cu-oxide film onto the electrode surface. Chapter 4 discusses a convenient method of making monodispersed water dispersible Cu loaded chitosan nanoparticles (Cu-CS) using HCl depolymerized CS polymer. The purpose of this study was to investigate if there was any improvement in antibacterial properties of Cu-CS nanoparticles prepared using hydrothermally treated CS polymer. Interestingly, it was observed that the antibacterial efficacy of Cu was not compromised in Cu-CS nanoparticles. Moreover, the materials exhibited improvement in antibacterial efficacy against both Gram-negative and Gram-positive bacteria species. A plausible mechanism has been proposed to explain antibacterial results. Chapter 5 summarizes major findings of this dissertation research and presents future research directions.

Page generated in 0.1015 seconds