• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur des estimateurs et des tests non-paramétriques pour des distributions et copules conditionnelles

Camirand Lemyre, Félix January 2016 (has links)
Pour modéliser un vecteur aléatoire en présence d'une co-variable, on peut d'abord faire appel à la fonction de répartition conditionnelle. En effet, cette dernière contient toute l'information ayant trait au comportement du vecteur étant donné une valeur prise par la co-variable. Il peut aussi être commode de séparer l'étude du comportement conjoint du vecteur de celle du comportement individuel de chacune de ses composantes. Pour ce faire, on utilise la copule conditionnelle, qui caractérise complètement la dépendance conditionnelle régissant les différentes associations entre les variables. Dans chacun des cas, la mise en oeuvre d'une stratégie d'estimation et d'inférence s'avère une étape essentielle à leur utilisant en pratique. Lorsqu'aucune information n'est disponible a priori quant à un choix éventuel de modèle, il devient pertinent d'opter pour des méthodes non-paramétriques. Le premier article de cette thèse, co-écrit par Jean-François Quessy et moi-même, propose une façon de ré-échantillonner des estimateurs non-paramétriques pour des distributions conditionnelles. Cet article a été publié dans la revue Statistics and Computing. En autres choses, nous y montrons comment obtenir des intervalles de confiance pour des statistiques s'écrivant en terme de la fonction de répartition conditionnelle. Le second article de cette thèse, co-écrit par Taoufik Bouezmarni, Jean-François Quessy et moi-même, s'affaire à étudier deux estimateurs non-paramétriques de la copule conditionnelles, proposés par Gijbels et coll. en présence de données sérielles. Cet article a été soumis dans la revue Statistics and Probability Letters. Nous identifions la distribution asymptotique de chacun de ces estimateurs pour des données mélangeantes. Le troisième article de cette thèse, co-écrit par Taoufik Bouezmarni, Jean-François Quessy et moi-même, propose une nouvelle façon d'étudier les relations de causalité entre deux séries chronologiques. Cet article a été soumis dans la revue Electronic Journal of Statistics. Dans cet article, nous utilisons la copule conditionnelle pour caractériser une version locale de la causalité au sens de Granger. Puis, nous proposons des mesures de causalité basées sur la copule conditionnelle. Le quatrième article de cette thèse, co-écrit par Taoufik Bouezmarni, Anouar El Ghouch et moi-même, propose une méthode qui permette d'estimer adéquatement la copule conditionnelle en présence de données incomplètes. Cet article a été soumis dans la revue Scandinavian Journal of Statistics. Les propriétés asymptotiques de l'estimateur proposé y sont aussi étudiées. Finalement, la dernière partie de cette thèse contient un travail inédit, qui porte sur la mise en oeuvre de tests statistiques permettant de déterminer si deux copules conditionnelles sont concordantes. En plus d'y présenter des résultats originaux, cette étude illustre l'utilité des techniques de ré-échantillonnage développées dans notre premier article.
2

Estimation non-paramétrique de la distribution et densité de copules

Kadi, Nabil January 2014 (has links)
Les copules représentent un outil innovant pour modéliser la structure de dépendance de plusieurs variables aléatoires. Introduites par Sklar [1959] pour résoudre un problème de probabilité énoncé par Maurice Fréchet, les copules deviennent essentielles à l'appréhension de nombreux domaines d'application tels que l'hydrologie (Salvadori, De Michele, Kottegoda, et Rosso [2007]), les sciences actuarielles (Frees et Valdez [1998]), ou la finance (Cherubini, Vecchiato, et Luciano [2004]; Mc-Neil, Frey, et Embrechts [2005]). Le grand intérêt est qu'elles fournissent des expressions relativement simples des structures des dépendances liant les marges d'une loi multidimensionnelle. Plus précisément, pour le cas bidimensionnel, une copule C définie sur [0, 1] [indice supérieur 2], associée à une distribution F de marges uniformes F [indice inférieur 1] et F [indice inférieur 2], permet de représenter la fonction de répartition jointe F(x [indice inférieur 1], x [indice inférieur 2]) en fonction de ces marginales F [indice inférieur 1](x [indice inférieur 1]) et F [indice inférieur 2](x [indice inférieur 2]) par la relation : F(x [indice inférieur 1], x [indice inférieur 2]) = C(F [indice inférieur 1](x [indice inférieur 1]), F [indice inférieur 2](x [indice inférieur 2])). Cependant en pratique, la copule est inconnue, d'où l'utilité de l'estimer. Dans ce mémoire nous commençons par les définitions et les propriétés liées aux copules ainsi que les modèles paramétriques des copules. Ensuite nous présentons les différentes méthodes d'estimation: paramétriques, semi-paramétriques et non-paramétriques. Dans ce travail, on a étudié les propriétés asymptotiques d'un estimateur non-paramétrique basé sur les polynômes de Bernstein proposé par Sancetta & Satchell [2004]. Aussi, on a utilisé cet estimateur pour proposer un nouvel estimateur du tau de Kendall.
3

Teste grafico para o ajuste de copulas arquimedianas usando variaveis BIPIT : um estudo de simulação / Test chart for the adjustment Archimedean copulas using variables BIPIT : a study of simulation

Bianchi, Marta Cristina Colozza 07 July 2008 (has links)
Orientador: Veronica Andrea Gonzales-Lopez / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-11T07:35:52Z (GMT). No. of bitstreams: 1 Bianchi_MartaCristinaColozza_M.pdf: 1867659 bytes, checksum: dbaca8bf802bf1568b0603fd248dc31f (MD5) Previous issue date: 2008 / Resumo: A crescente utilização de cópulas para modelagem de dependência em dados multivariados leva ao estudo de metodologias para o ajuste de cópulas. Este estudo é recente, assim como a plena utilização da teoria de cópulas para modelagem padrão. Grande parte das metodologias existentes ainda encontra-se em fase de estudo e somente alguns métodos foram validados recentemente. Há a necessidade de mecanismos de fácil acesso a detecção de estruturas de dependência ainda escassos na literatura. Nesta dissertação, é apresentado um método gráfico para o ajuste de cópulas, adaptado do QQplot, denominado Kendall Plot. Este método torna-se mais completo que o QQplot ao se postular a adição de bandas de confiança ao gráfico Kendall Plot, que permitem tomar uma decisão em relação a uma estrutura de dependência fixa, expressa por uma cópula, a ser testada para a amostra disponível. A redução de dimensão dos dados a uma variável unidimensional denominada BIPIT, que carrega informação a respeito da estrutura de dependência dos dados, permite a utilização da adaptação do QQplot com o fim de se testar estruturas de dependência / Abstract: The growing utilization of copulas to the dependency fitting of multi-variated data leads to the study of methodologies for copulas fitting. This study is recent, such as the complete utilization of the theory of copulas to standard fitting. Many of the existing methodologies are still in studies and only some have been recently validated. There is a need for easy-access mechanisms to detect dependency structures still missing in the statistical literature. It is presented in this dissertation a graphic method to the copulas fitting adapted from QQplot denominated Kendall Plot. This method is more complete than the QQplot due to the addition of confidence bands to the Kendall Plot graphic that allows the researcher to make a decision related to a fixed dependency structure, expressed by a copula, to be tested to the available sample. The reduction of the data dimension to a one-dimensional random variable, called BIPIT, which carries information about dependency data structure, allows the utilization of the QQplot adaptation for testing dependency structures / Mestrado / Teoria de Copulas / Mestre em Estatística
4

Méthodes d'apprentissage statistique pour le ranking : théorie, algorithmes et applications / Statistical learning methods for ranking : theory, algorithms and applications

Robbiano, Sylvain 19 June 2013 (has links)
Le ranking multipartite est un problème d'apprentissage statistique qui consiste à ordonner les observations qui appartiennent à un espace de grande dimension dans le même ordre que les labels, de sorte que les observations avec le label le plus élevé apparaissent en haut de la liste. Cette thèse vise à comprendre la nature probabiliste du problème de ranking multipartite afin d'obtenir des garanties théoriques pour les algorithmes de ranking. Dans ce cadre, la sortie d'un algorithme de ranking prend la forme d'une fonction de scoring, une fonction qui envoie l'espace des observations sur la droite réelle et l'ordre finale est construit en utilisant l'ordre induit par la droite réelle. Les contributions de ce manuscrit sont les suivantes : d'abord, nous nous concentrons sur la caractérisation des solutions optimales de ranking multipartite. Le deuxième thème de recherche est la conception d'algorithmes pour produire des fonctions de scoring. Nous proposons deux méthodes, la première utilisant une procédure d'agrégation, la deuxième un schema d'approximation. Enfin, nous revenons au problème de ranking binaire afin d'établir des vitesse minimax adaptives de convergences. / Multipartite ranking is a statistical learning problem that consists in ordering observations that belong to a high dimensional feature space in the same order as the labels, so that the observations with the highest label appear at the top of the list. This work aims to understand the probabilistic nature of the multipartite ranking problem in order to obtain theoretical guarantees for ranking algorithms. In this context, the output of a ranking algorithm takes the form of a scoring function, a function that maps the space of the observation to the real line which order is induced using the values on the real line. The contributions of this manuscript are the following : First, we focus on the characterization of optimal solutions to multipartite ranking. The second research theme is the design of algorithms to produce scoring functions. We offer two methods, the first using an aggregation procedure, the second an approximation scheme. Finally, we return to the binary ranking problem to establish adaptive minimax rate of convergence.
5

Méthodes d'apprentissage statistique pour le ranking théorie, algorithmes et applications

Robbiano, Sylvain 19 June 2013 (has links) (PDF)
Le ranking multipartite est un problème d'apprentissage statistique qui consiste à ordonner les observations qui appartiennent à un espace de grande dimension dans le même ordre que les labels, de sorte que les observations avec le label le plus élevé apparaissent en haut de la liste. Cette thèse vise à comprendre la nature probabiliste du problème de ranking multipartite afin d'obtenir des garanties théoriques pour les algorithmes de ranking. Dans ce cadre, la sortie d'un algorithme de ranking prend la forme d'une fonction de scoring, une fonction qui envoie l'espace des observations sur la droite réelle et l'ordre final est construit en utilisant l'ordre induit par la droite réelle. Les contributions de ce manuscrit sont les suivantes : d'abord, nous nous concentrons sur la caractérisation des solutions optimales de ranking multipartite. Une nouvelle condition sur les rapports de vraisemblance est introduite et jugée nécessaire et suffisante pour rendre le problème de ranking multipartite bien posé. Ensuite, nous examinons les critères pour évaluer la fonction de scoring et on propose d'utiliser une généralisation de la courbe ROC nommée la surface ROC pour cela ainsi que le volume induit par cette surface. Pour être utilisée dans les applications, la contrepartie empirique de la surface ROC est étudiée et les résultats sur sa consistance sont établis. Le deuxième thème de recherche est la conception d'algorithmes pour produire des fonctions de scoring. La première procédure est basée sur l'agrégation des fonctions de scoring apprises sur des sous-problèmes de ranking binaire. Dans le but d'agréger les ordres induits par les fonctions de scoring, nous utilisons une approche métrique basée sur le de Kendall pour trouver une fonction de scoring médiane. La deuxième procédure est une méthode récursive, inspirée par l'algorithme TreeRank qui peut être considéré comme une version pondérée de CART. Une simple modification est proposée pour obtenir une approximation de la surface ROC optimale en utilisant une fonction de scoring constante par morceaux. Ces procédures sont comparées aux algorithmes de l'état de l'art pour le ranking multipartite en utilisant des jeux de données réelles et simulées. Les performances mettent en évidence les cas où nos procédures sont bien adaptées, en particulier lorsque la dimension de l'espace des caractéristiques est beaucoup plus grand que le nombre d'étiquettes. Enfin, nous revenons au problème de ranking binaire afin d'établir des vitesses minimax adaptatives de convergence. Ces vitesses sont montrées pour des classes de distributions contrôlées par la complexité de la distribution a posteriori et une condition de faible bruit. La procédure qui permet d'atteindre ces taux est basée sur des estimateurs de type plug-in de la distribution a posteriori et une méthode d'agrégation utilisant des poids exponentiels.

Page generated in 0.0727 seconds