• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improved efficiencies in flame weeding

de Rooy, S. C. January 1992 (has links)
Possible areas of improving the efficiencies of the Lincoln University flame weeder are identified and investigated. The Hoffmann burner initially used in the Lincoln University flame weeder was found not to entrain sufficient air to allow complete combustion of the LPG used. A new burner, the Modified Lincoln University burner, was designed to improve the entrainment of air. Results show that the new design entrained sufficient air to theoretically allow complete combustion of the LPG, and this resulted in a 22.7% increase in heat output per Kg of LPG used over the Hoffmann burner. Temperature x time exposure constants required to kill weeds 0 - 15, 15 - 30, and 30 - 45 mm in size, were found to be respectively 750, 882, and 989 degrees Celsius.Seconds. These constants can be used to calculate the maximum speed of travel an operator can use a flame weeder at, once the temperature profile underneath its shields are established at various travel speeds, and therefore ensure that the flame weeder is used at its maximum efficiency. The constants can also be used to establish the cost efficiency of any flame weeder (in $/Ha), depending on the size of the weeds to be treated. The materials and methods used in establishing the temperature x time exposure constants can be used to establish the temperature x time exposure constant of any weed species at any size.

Page generated in 0.1363 seconds