Spelling suggestions: "subject:"temperatureprogrammed reduction"" "subject:"temperaturprogrammen reduction""
1 |
Ανάπτυξη και χαρακτηρισμός καινοτόμων καταλυτών για την αντίδραση μετατόπισης του CO με ατμό σε χαμηλές θερμοκρασίες και κινητική μελέτηΠαναγιωτοπούλου, Παρασκευή 14 February 2008 (has links)
Στη παρούσα εργασία μελετάται η ανάπτυξη και ο χαρακτηρισμός καινοτόμων υποστηριγμένων καταλυτών ευγενών μετάλλων για την αντίδραση μετατόπισης του CO με ατμό (Water Gas Shift, WGS) σε χαμηλές θερμοκρασίες καθώς και η κινητική της εν λόγω αντίδρασης.
Εξετάστηκε η επίδραση των φυσικοχημικών και μορφολογικών χαρακτηριστικών της διεσπαρμένης μεταλλικής φάσης (Pt, Pd, Ru, Rh) και του φορέα (οξείδια μετάλλων) καθώς και της χρήσης προωθητών (αλκάλια, αλκαλικές γαίες) στην καταλυτική ενεργότητα. Μεγαλύτερη δραστικότητα παρατηρήθηκε για καταλύτες Pt υποστηριγμένους σε αναγώγιμα οξείδια, κυρίως TiO2 και CeO2. Η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, είναι ανεξάρτητη από τη φύση του μετάλλου, όταν τα ευγενή μέταλλα διασπείρονται στους φορείς TiO2 και CeO2. Αντιθέτως για τους καταλύτες Μ/Al2O3, η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, εξαρτάται από τη φύση του μετάλλου, υποδεικνύοντας ότι η αντίδραση WGS, σε καταλύτες ευγενών μετάλλων υποστηριγμένων σε μη αναγώγιμους φορείς, ακολουθεί διαφορετικό μηχανισμό. Για καταλύτες Pt/TiO2, Ru/TiO2, Pt/CeO2 και Pt/Al2O3 η μετατροπή του CO αυξάνεται με αύξηση της περιεκτικότητας του καταλύτη σε μέταλλο. Ωστόσο ο εγγενής ρυθμός της αντίδρασης ανά επιφανειακό άτομο μετάλλου και η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, δεν εξαρτώνται από τη φόρτιση (0-5 wt.%) και το μέγεθος των κρυσταλλιτών (1.3-16nm) του μετάλλου.
Η επίδραση των μορφολογικών χαρακτηριστικών του φορέα στην καταλυτική ενεργότητα μελετήθηκε σε καταλύτες Pt/TiO2, και Pt/CeO2. Για τους καταλύτες Pt/TiO2 βρέθηκε ότι η μετατροπή του CO σε χαμηλές θερμοκρασίες βελτιώνεται σημαντικά όταν ο Pt διασπείρεται σε φορείς με μικρότερο μέγεθος κρυσταλλιτών. Η συχνότητα αναστροφής (TOF) του CO αυξάνεται κατά δύο τάξεις μεγέθους καθώς μειώνεται το μέγεθος των κρυσταλλιτών του TiO2 από 35 σε 16 nm, με παράλληλη μείωση της ενέργειας ενεργοποίησης από 16.9 έως 11.9 kcal/mol. Βρέθηκε, με χρήση τεχνικών θερμοπρογραμματιζόμενης αναγωγής (TPR) και φασματοσκοπίας Raman και FTIR, ότι η παρατηρούμενη αύξηση της ενεργότητας καταλυτών Pt/TiO2 οφείλεται σε αύξηση της αναγωγιμότητας του φορέα TiO2, η οποία αυξάνεται με μείωση του μεγέθους των κρυσταλλιτών του. Τα αποτελέσματα παρέχουν σημαντικές ενδείξεις για τη συμμετοχή του φορέα στο μηχανισμό της αντίδρασης WGS είτε άμεσα, μέσω του οξειδοαναγωγικού (redox) μηχανισμού, είτε έμμεσα, μέσω του συνδυαστικού (associative) μηχανισμού. Και στις δύο περιπτώσεις, φαίνεται ότι η παρουσία μερικώς ανηγμένων σωματιδίων TiO2 στην περιοχή κοντά στο διεσπαρμένο Pt, είναι απαραίτητη για την παραγωγή ενεργών κέντρων στη διεπιφάνεια μετάλλου/φορέα. Σε αντίθεση με τους καταλύτες Pt/TiO2, για τους καταλύτες Pt/CeO2 βρέθηκε ότι τόσο η συχνότητα αναστροφής του CO όσο και η ενέργεια ενεργοποίησης της αντίδρασης δεν εξαρτώνται σημαντικά από τα μορφολογικά χαρακτηριστικά του φορέα, τουλάχιστον υπό τις παρούσες πειραματικές συνθήκες. Η ενίσχυση του φορέα με κατάλληλη ποσότητα αλκαλίων (Na, K, Li, Cs) οδηγεί σε σημαντική αύξηση της ενεργότητας των καταλυτών Pt/TiO2. Βρέθηκε ότι σε όλες τις περιπτώσεις, η συχνότητα αναστροφής του CO περνάει από μέγιστο σε καταλύτες με περιεκτικότητα Pt:Αλκάλιο=1:1. Βέλτιστη συμπεριφορά παρουσίασε ο φορέας ενισχυμένος με Na, για τον οποίο παρατηρήθηκε ότι ο εγγενής ρυθμός της αντίδρασης ανά επιφανειακό άτομο Pt τριπλασιάζεται καθώς αυξάνεται η περιεκτικότητα σε Na από 0 σε 0.06 wt.%.
Η προσθήκη αλκαλικών γαιών (CaO, SrO, BaO, MgO) στο φορέα οδηγεί σε σημαντική βελτίωση της καταλυτικής ενεργότητας των καταλυτών Pt/TiO2. Βέλτιστη συμπεριφορά παρουσιάζουν οι καταλύτες ενισχυμένοι με CaO και SrO σε περιεκτικότητα 2 wt.%, οι οποίοι έχουν υποστεί θερμική κατεργασία στους 600OC. Αύξηση της περιεκτικότητας CaO από 0 σε 4 wt.% έχει σαν αποτέλεσμα ο εγγενής ρυθμός της αντίδρασης να περνάει από μέγιστο, για το δείγμα με 2 wt.% CaO, του οποίου η συχνότητα αναστροφής του CO είναι ~2.5 φορές μεγαλύτερη συγκριτικά με το μη ενισχυμένο δείγμα.
Τα αποτελέσματα των πειραμάτων Η2-TPD έδειξαν ότι, για καταλύτες ενισχυμένους με Na, Cs, CaO, WO3, καθώς και για καταλύτες M/TiO2 (M:Pt, Rh, Ru, Pd), ο ρυθμός της αντίδρασης ανά επιφανειακό άτομο Pt εξαρτάται από την ισχύ των θέσεων ρόφησης στη διεπιφάνεια μετάλλου/φορέα και περνάει από μέγιστο για μία ορισμένη τιμή της θερμοκρασίας εκρόφησης του υδρογόνου από τις θέσεις αυτές. Τα αποτελέσματα των πειραμάτων FTIR έδειξαν ότι η ενίσχυση των καταλυτών Pt/TiO2 με Na, Cs και CaO, οδηγεί σε αύξηση του πληθυσμού των ροφημένων ειδών CO στη διεπιφάνεια μετάλλου/φορέα. Το αντίθετο παρατηρείται για τον ενισχυμένο με WO3 καταλύτη. Για τους καταλύτες αυτούς καθώς και για τους Rh/TiO2 και M/Al2O3 (M: Pt, Ru, Pd), βρέθηκε ότι ο ρυθμός της αντίδρασης WGS αυξάνεται με ελάττωση της θερμοκρασίας διάσπασης των φορμικών ειδών. Τα αποτελέσματα υποδεικνύουν ότι η καταλυτική συμπεριφορά καθορίζεται σε μεγάλο βαθμό από τα φυσικοχημικά χαρακτηριστικά του φορέα, με τις καταλυτικά ενεργές θέσεις να εντοπίζονται στη διεπιφάνεια. Ο πληθυσμός και η ισχύς ρόφησης των ενεργών κέντρων και, επομένως, η καταλυτική ενεργότητα τροποποιούνται από τις αλληλεπιδράσεις μετάλλου/φορέα και από την ύπαρξη προωθητών.
Η κινητική μελέτη της αντίδρασης WGS, σε καταλύτες Pt/TiO2 και Pt/0.34%Cs-TiO2, έδειξε ότι αύξηση της περιεκτικότητας του CO ή του Η2Ο στη τροφοδοσία οδηγεί σε αύξηση του ρυθμού, προσθήκη Η2 στην τροφοδοσία μειώνει σημαντικά τον ρυθμό ενώ το CO2 αφήνει το ρυθμό πρακτικά ανεπηρέαστο. Βρέθηκε ότι η αντίδραση είναι τάξης 0.5 ως προς CO, 1 ως προς Η2Ο, ~0 ως προς CO2 και ~-0.7 ως προς Η2. Τα κινητικά αποτελέσματα και για τους δύο καταλύτες προσαρμόζονται ικανοποιητικά σε εξίσωση ρυθμού που βασίζεται σε μηχανισμό ο οποίος περιλαμβάνει ρόφηση του H2O στο φορέα, ρόφηση των CO, Η2Ο, CO2 και Η2 στο μέταλλο, σχηματισμό ενδιάμεσων φορμικών ειδών στην επιφάνεια του φορέα και εκρόφηση των προϊόντων CO2 και H2.
Τέλος μελετήθηκε η επίδραση του χρόνου επαφής στη συμπεριφορά καταλυτών 0.5%Pt/TiO2, 0.5%Pt/1%CaO-TiO2(Cal.600OC), 1%Pt/1%CaO-TiO2(Cal.600OC) και ενός εμπορικού καταλύτη και βρέθηκε ότι αύξηση του χρόνου επαφής (W/F) από 0.03 έως 0.20 × 3 g s/cm , οδηγεί σε σταδιακή αύξηση της μετατροπής του CO. Οι καταλύτες αυτοί υποβλήθησαν σε πειράματα μακροχρόνιας σταθερότητας, σε συνθήκες αντίδρασης, και από τα αποτελέσματα φαίνεται ότι η μετατροπή του CO παραμένει πρακτικά σταθερή για συνολικό χρόνο αντίδρασης περίπου 60 ώρες.
Τα αποτελέσματα της παρούσας εργασίας μπορούν να χρησιμοποιηθούν για το «σχεδιασμό» και την ανάπτυξη καταλυτών οι οποίοι θα εκπληρώνουν τις προϋποθέσεις για χρήση σε εφαρμογές παραγωγής υδρογόνου για την τροφοδοσία κυψελίδων καυσίμου. / In the present study, a detailed investigation has been carried out in an attempt to identify the key physichochemical parameters which determine the catalytic activity of supported noble metal catalysts for the water-gas shift (WGS) reaction. A kinetic model, has been also developed, which can describe the kinetics of the reaction.
The catalytic activity of supported noble metal catalysts (Pt, Rh, Ru, Pd) for the WGS reaction investigated with respect to the structural and morphological properties of the dispersed metallic phase and the support. It has been found that Pt catalysts are generally more active than Ru, Rh and Pd, and exhibit significantly higher activity when supported on “reducible” (TiO2, CeO2, La2O3, YSZ) rather than on “irreducible” (Al2O3, MgO, SiO2) metal oxides. Titania-supported platimum is more active than the well-studied Pt/CeO2 catalyst, especially in the temperature range of 200-250oC.
When noble metals are dispersed on “reducible” oxides, such as CeO2 and TiO2, the apparent activation energy (Ea) of the reaction does not depend on the nature of the metallic phase but only on the nature of the support. In contrast, Ea differs from one metal to another when supported on an irreducible oxide, such as Al2O3, indicating that a different reaction mechanism is operable.
Conversion of CO at a given temperature, for all metal-support combinations investigated, increases significantly with increasing metal loading in the range of 0.1-5.0 wt.%. However, activation energy and specific activity (TOF) do not depend on the morphological and structural characteristics of the metallic phase, such as loading, dispersion and crystallite size.
The effect of the morphology of the support on catalytic performance has been investigated over Pt catalysts supported on four commercial titanium dioxide carriers with different structural characteristics (surface area, primary crystallite size of TiO2). It has been found that conversion of CO at low temperatures (<300oC) is significantly improved when Pt is dispersed on TiO2 samples of low crystallite size. The turnover frequency of CO increases by more than two orders of magnitude with decreasing crystallite size of TiO2 from 35 to 16 nm, with a parallel decrease of activation energy from 16.9 to 11.9 kcal/mol. This is attributed to the higher reducibility of smaller titania crystallites, as evidenced from the results of temperature programmed reduction (TPR) techniques and in situ Raman and FTIR spectroscopies. H2 and CO-TPR experiments, demonstrated that the reducibility of titania, increases with increasing the specific surface area of the catalyst or, conversely, with decreasing the primary particle size ze ( TiO2 d ) of the support. This has been proven by the results of in situ Raman experiments conducted under hydrogen flow which showed that formation of substoichiometric TiOx species initiates at lower temperatures and is more facile over Pt/TiO2 catalysts with smaller titania particle sizes. FTIR experiments provide evidence that the reaction takes place via interaction between CO and hydroxyl groups of the support, with intermediate production of formates. Partial reduction of the support results in the creation of new sites for CO adsorption, probably located at the metal/support interface, which have been tentatively assigned to metallic Pt in contact with Ti3+ ions. The observed enhancement of the WGS activity of Pt/TiO2 catalysts with increasing the reducibility of the support (decreasing TiO2 d ) may be explained by both the “regenerative” and the “associative” mechanism of the reaction.
In contrast to what has been found over Pt/TiO2 catalysts, catalytic activity of dispersed Pt and the apparent activation energy of the reaction do not depend on the structural and morphological characteristics of CeO2, at least in the range of surface areas (3.3-57 m2/g) and primary crystallite sizes (10-32 nm) investigated.
The catalytic performance of titania-supported platinum catalysts for the WGS reaction can be significantly improved by addition of small amounts of alkali (Na, K, Li, Cs) promoters. The catalyst promoted with Na exhibits better catalytic performance, compared to Li-, Cs- and K-promoted samples. It has been also found that, at least in the case of Na- and Cs-promoted catalysts, the specific catalytic activity (TOF) goes through a maximum for alkali:Pt atomic ratios of 1:1. The catalytic activity of Pt/TiO2 catalysts can be also improved by addition of alkaline earth (CaO, SrO, BaO, MgO) promoters. Optimal results were obtained for the catalysts promoted with 2 wt.% CaO and SrO, the specific activity (TOF) of which is about 2.5 times higher compared to that of the unpromoted catalyst.
The results of H2-TPD experiments, over Na, Cs, CaO and WO3-promoted Pt/TiO2 catalysts and M/TiO2 (M:Pt, Rh, Ru, Pd) catalysts, demonstrated that the reaction rate (TOF) depends on the strength of the adsorption sites at the metal/support interface and goes through a maximum for a specific temperature of hydrogen desorption from theses sites. FTIR experiments provide evidence that the addition of Na, Cs and CaO over Pt/TiO2 catalysts results in an increase of the population of CO species adsorbed at the metal/support interface. It has also been found (CO-TPD experiments) that the turnover frequency of CO increases with decreasing the temperature of the decomposition of formate species, which may be produced by interaction between CO adsorbed on platinum with hydroxyl groups of TiO2 at the metal/support interface. The above results indicate that the catalytic performance of supported noble metal catalysts for the WGS reaction depends strongly on the physichochemical characteristics of the support. The population and the strength of the catalytic active sites, probably located at the metal/support interface, can be altered due the metal-support interactions and the presence of promoters.
The kinetic investigation of the WGS reaction has being carried out over Pt/TiO2 and Pt/0.34%Cs-TiO2 catalysts. It was found that the reaction rate increases with increasing the partial pressure of CO or H2O in the feed composition. The addition of H2 in the reaction mixture results in a substantial decrease of the reaction rate, while the partial pressure of CO2 does not affect the reaction rate. It has also been found that the reaction order is 0.5, 1, ~-0.7 and ~0 for CO, H2O, H2 and CO2, respectively. The kinetic results were modelled by a rate expression based on a mechanism reaction, which includes H2O adsorption on the support, CO, H2O, H2 and CO2 adsorption on Pt, formation of intermediate formate species on the support and finally desorption of H2 and CO2.
The effect of contact time on the catalytic performance has been investigated, under realistic reaction conditions, over 0.5%Pt/TiO2, 0.5%Pt/1%CaO-TiO2(Cal.600OC), 1%Pt/1%CaOTiO2 (Cal.600OC) and a commercial catalyst. It has been found that the conversion of CO at a given temperature increases with increasing W/F between 0.03 and 0.20 × 3 g s/cm. The conversion of CO of the above catalysts is remained constant, under reaction conditions, for about 60 hours.
The results of the present study, can be used to develop active, selective and stable LT-WGS catalysts suitable for Fuel Cell applications.
|
2 |
Hydrogen generation from dimethyl ether by autothermal reformingNilsson, Marita January 2007 (has links)
<p>Heavy-duty trucks are in idle operation during long periods of time, providing the vehicles with electricity via the alternator at standstill. Idling trucks contribute to large amounts of emissions and high fuel consumption as a result of the low efficiency from fuel to electricity. Truck manufacturers are working to develop equipment using auxiliary power units to supply the trucks with electricity, which operate independently of the main engine. Fuel cell-based auxiliary power units could offer high efficiencies and low noise and vibrations. The hydrogen required for the fuel cell can be generated in an onboard fuel reformer. This thesis is devoted to hydrogen generation from dimethyl ether, DME, by autothermal reforming focusing on the application of fuel cell auxiliary power units. In the search for alternative fuels, DME has lately been identified as a promising diesel substitute.</p><p>The first part of the thesis gives an introduction to the field of DME reforming with a literature survey of recent studies within the area. Included are also results from thermodynamic equilibrium calculations.</p><p>In the following parts of the thesis, experimental studies on autothermal reforming of DME are presented. A reformer constructed to generate hydrogen to feed a 5 kW<sub>e</sub> polymer electrolyte fuel cell is evaluated with emphasis on trying to work close to a practically viable process, i.e. without external heating and using gas mixtures resembling real conditions. Additional experiments have been conducted to investigate the use of catalytic oxidation of dimethyl ether as a heat source during startup. The results of these studies are presented in Paper I.</p><p>In the second experimental study of this thesis, which is presented in Paper II, Pd-based monolithic catalysts are evaluated at small scale for use in autothermal reforming of DME. A screening of various catalyst materials has been performed followed by a study of the influence on the product composition of varying operating parameters such as oxygen-to-DME ratio, steam-to-DME ratio, and temperature.</p>
|
3 |
Hydrogen generation from dimethyl ether by autothermal reformingNilsson, Marita January 2007 (has links)
Heavy-duty trucks are in idle operation during long periods of time, providing the vehicles with electricity via the alternator at standstill. Idling trucks contribute to large amounts of emissions and high fuel consumption as a result of the low efficiency from fuel to electricity. Truck manufacturers are working to develop equipment using auxiliary power units to supply the trucks with electricity, which operate independently of the main engine. Fuel cell-based auxiliary power units could offer high efficiencies and low noise and vibrations. The hydrogen required for the fuel cell can be generated in an onboard fuel reformer. This thesis is devoted to hydrogen generation from dimethyl ether, DME, by autothermal reforming focusing on the application of fuel cell auxiliary power units. In the search for alternative fuels, DME has lately been identified as a promising diesel substitute. The first part of the thesis gives an introduction to the field of DME reforming with a literature survey of recent studies within the area. Included are also results from thermodynamic equilibrium calculations. In the following parts of the thesis, experimental studies on autothermal reforming of DME are presented. A reformer constructed to generate hydrogen to feed a 5 kWe polymer electrolyte fuel cell is evaluated with emphasis on trying to work close to a practically viable process, i.e. without external heating and using gas mixtures resembling real conditions. Additional experiments have been conducted to investigate the use of catalytic oxidation of dimethyl ether as a heat source during startup. The results of these studies are presented in Paper I. In the second experimental study of this thesis, which is presented in Paper II, Pd-based monolithic catalysts are evaluated at small scale for use in autothermal reforming of DME. A screening of various catalyst materials has been performed followed by a study of the influence on the product composition of varying operating parameters such as oxygen-to-DME ratio, steam-to-DME ratio, and temperature. / QC 20101115
|
4 |
Μελέτη τροποποιημένων με βόριο καταλυτών Νi/Al2O3 για την αναμόρφωση του μεθανίου με διοξείδιο του άνθρακα / Study of boron-modified Ni/Al2O3 catalysts for the carbon dioxide reforming of methaneΦούσκας, Αγάπιος 25 January 2012 (has links)
Κατά τις τελευταίες δεκαετίες παρατηρείται συνεχής αύξηση της έντασης του φαινομένου του θερμοκηπίου γεγονός που προκαλεί σημαντικές συνέπειες στο περιβάλλον και στη ζωή μας γενικότερα. Συνεπώς, είναι απαραίτητη η μείωση της ανθρωπογενούς εκπομπής των αερίων που συμβάλλουν στην αύξηση του φαινομένου αυτού. Η εκμετάλλευση και χρήση των δύο πιο σημαντικών θερμοκηπικών αερίων, του μεθανίου και του διοξειδίου του άνθρακα, μπορεί να επιτευχθεί με την αναμόρφωση του CH4 με CO2 ή αλλιώς ξηρή αναμόρφωση του μεθανίου (Dry Reforming of Methane-DRM). Με τη διεργασία DRM τα δύο συγκεκριμένα αέρια μετατρέπονται σε αέριο σύνθεσης (synthesis gas), το οποίο χρησιμοποιείται είτε για τη σύνθεση πληθώρας οργανικών ενώσεων, είτε για την παραγωγή Η2 για ενεργειακούς σκοπούς. Η DRM παρουσιάζει σημαντικά πλεονεκτήματα: δεν απαιτείται η χρήση ύδατος, φθηνό σχετικά κόστος εγκαταστάσεων, χρησιμοποιείται σε χημικά συστήματα μεταφοράς ενέργειας, ενώ και το αέριο σύνθεσης που παράγεται έχει ακόμα κατάλληλη αναλογία για συνθέσεις Fischer–Tropsch. Παρόλα αυτά η DRM δεν έχει εκτεταμένη βιομηχανική εφαρμογή επειδή αντιμετωπίζει ένα σημαντικό μειονέκτημα: ο καταλύτης μετά από κάποιο χρόνο λειτουργίας απενεργοποιείται λόγω του άνθρακα που αποτίθεται πάνω του. Στην παρούσα εργασία μελετήθηκε ο state of the art καταλύτης Ni/Al2O3, τον οποίο τροποποιήσαμε με βόριο σε διάφορους λόγους [Β/(B+Νi)] με κύριο στόχο τη μείωση των ανθρακούχων αποθέσεων. Οι τροποποιημένοι καταλύτες συντέθηκαν με τη μέθοδο του υγρού συνεμποτισμού και χαρακτηρίστηκαν φυσικοχημικά με διάφορες τεχνικές, ώστε να μελετήσουμε την επίδραση του βορίου στην υφή τους (ΒΕΤ, porosimetry, SEM, TEM), στη δομή τους (XRD, UV-Vis DRS) και στην αναγωγιμότητά τους (H2-TPR). Η καταλυτική συμπεριφορά τους για την αντίδραση της ξηρής αναμόρφωσης του μεθανίου αξιολογήθηκε σε αντιδραστήρα σταθερής κλίνης, για 24h, σε συνθήκες: 973Κ, 1 atm, τροφοδοσία 50%CH4-50%CO2. Ο άνθρακας που αποτέθηκε στους χρησιμοποιημένους καταλύτες μετρήθηκε με τη μέθοδο της θερμοπρογραμματισμένης υδρογόνωσης (TPH). Τα ανηγμένα και χρησιμοποιημένα στην DRM καταλυτικά δείγματα μελετήθηκαν επίσης με ηλεκτρονικό μικροσκόπιο σάρωσης (SEM με αναλυτή EDS) και ηλεκτρονικό μικροσκόπιο διαπερατότητας (ΤΕΜ).
Βρέθηκε ότι η παρουσία του Β μειώνει σημαντικά την ποσότητα του αποτιθέμενου άνθρακα στους καταλύτες Ni/Al2O3, σε ποσοστό έως και 86%, χωρίς να επηρεάζει ιδιαίτερα τη δραστικότητα και την εκλεκτικότητα των καταλυτών. Σημαντικό ρόλο παίζει το ποσοστό του Β στον καταλύτη, με τον καταλύτη με λόγο Β/(B+Νi) = 0,5 να εμφανίζει τη βέλτιστη συμπεριφορά. Τα αποτελέσματα μας έδειξαν ότι η ιδιαίτερη θετική επίδραση του βορίου οφείλεται κυρίως στο γεγονός ότι ευνοεί τη διασπορά του μεταλλικού νικελίου. Τροποποίηση με βόριο, σε κατάλληλη περιοχή φορτίσεων, του καταλύτη Ni/Al2O3 μεγιστοποιεί το πλήθος των νανοσωματιδίων νικελίου με μέση διάσταση < 6.0 nm, τα οποία, ως γνωστόν, ελαχιστοποιούν την απόθεση άνθρακα. / The intensity of the greenhouse effect is constantly increasing in the last few decades with an adverse effect both on the environment and the humanity. In order to decrease the effect, human-caused emissions should be minimized. The two most important greenhouse gases, methane and carbon dioxide, can be used in the DRM (Dry Reforming of Methane) process. With this process the above mentioned gases are converted to synthesis gas, which is then used for the synthesis of a great number of organic compounds and synthetic fuels (through the Fisher-Tropsch syntheses) or for the production hydrogen to be used as a fuel (energy purposes). The DRM process presents a number of advantages, namely: no water is required, relatively low cost of process plants,it can be used as a Chemical Energy Transfer System and, finally, the produced synthesis gas has adequate CO/H2 ratio for Fisher-Tropsch syntheses. Although DRM is a promising process, its industrial application is hindered by a major drawback: the catalysts are rapidly deactivating due to coking.
In the current study, the state of the art catalyst Ni/Al2O3 was studied and modified with boron, using different ratios of Β/(B+Νi). Our primary objective was to reduce coking. The modified catalysts were synthesized by wet co-impregnation and physicochemically characterized in their oxidic, reduced and used forms, using various techniques, in order to investigate the influence of boron on the texture (BET, Porosimetry, SEM, TEM), structure (XRD, UV-Vis DRS) and reducibility (H2-TPR) of the catalysts. The catalytic performance for the DRM process was studied under stable conditions (973Κ, 1 atm and 50%CH4-50%CO2 undiluted feed), for 24h, using a fixed bed reactor. Carbonaceous deposits on the used catalysts were determined by Temperature Programmed Hydrogenation (TPH). Scanning Electron Microscopy (SEM) with EDS analyser and Transmission Electron Microscopy (TEM) were also used in the study of reduced and used catalytic samples.
Modifying Ni/Al2O3 catalysts with boron results in a great decrease of the deposited coke (up to 86%), without any significantly influence on the activity and selectivity of the catalysts. A major factor influencing the catalyst is the B loading, with the ratio Β/(B+Νi)=0,5 giving the best results. Boron’s positive effect was mainly attributed to its ability to increase Ni dispersion. Modification of Ni/Al2O3 catalysts, by using the appropriate boron loading, resulted to an increase of the amount of nickel nanoparticles with an average dimension under 6.0 nm, which are known to minimize coke deposition.
|
5 |
Synthesis, Structure and Catalytic Properties of Pd2+, Pt2+ and Pt4+ Ion Substituted TiO2Mukri, Bhaskar Devu January 2013 (has links) (PDF)
After introducing fundamentals of catalysis with noble metal surfaces especially Pt metal for CO oxidation and subsequent developments on nano-crystalline Pt metals supported on oxide supports, an idea of Pt ion in reducible oxide supports acting as adsorption sites is proposed in chapter 1. Idea of red-ox cycling of an ion in an oxide matrix is presented taking Cu ion in YBa2Cu3O7 as an example. Noble metal ions in reducible oxides such as CeO2 or TiO2 acting as adsorption sites and hence a red-ox catalyst was arrived at from chemical considerations. Among several reducible oxide supports, TiO2 was chosen from crystal structure and electronic structure considerations.
A good redox catalyst for auto exhaust and related applications should have high oxygen storage capacity (OSC). Any new material that can work as a redox catalyst should be tested for its OSC. Therefore we designed and fabricated a temperature programmed reduction by hydrogen (H2¬TPR) system to measure OSC. This is presented in chapter 2. We have synthesized a number of oxides by solution combustion method. Structures were determined by powder XRD and Rietveld refinement methods. Fe2O3, Fe2-xPdxO3-δ, Cu1-xMnAl1+xO4, LaCoO3, LaCo1-xPdxO3-δ, CeO2, Ce1¬xPdxO2-δ, TiO2, Ti1-xPdxO2-δ and many other oxide systems were synthesized and their structures were determined. OSC of these systems were determined employing the H2/TPR system. TPR studies were carried out for several redox cycles in each case. Except Pd ion substituted CeO2 and TiO2 other oxide systems decomposed during redox cycling. Pd ion substituted TiO2 gave highest OSC and also it was stable paving way to choose this system for further study.
In chapter 3, we have described lattice oxygen of TiO2 activation by the substitution of Pd ion in its lattice. Ti1-xPdxO2-x (x = 0.01 to 0.03) have been synthesized by solution combustion method crystallizing in anatase TiO2 structure. Pd is in +2 oxidation state and Ti is in +4 oxidation state in the catalyst as seen by XPS. Pd is more ionic in TiO2 lattice compared to Pd in PdO. Oxygen storage capacity defined by ‘amount of oxygen that is used reversibly to oxidize CO’ is as high as 5100 μmol/g of Ti0.97Pd0.03O1.97. Oxygen is extracted by CO to CO2 in absence of feed oxygen even at room temperature. Rate of CO oxidation is 2.75 μmol.g-1.s-1 at 60 0C over Ti0.97Pd0.03O1.97 and C2H2 gets oxidized to CO2 and H2O at room temperature. Catalyst is not poisoned on long time operation of the reactor. Such high catalytic activity is due to activated lattice oxygen created by the substitution of Pd ion as seen from first-principles density functional theory (DFT) calculations with 96 atom supercells of Ti32O64, Ti31Pd1O63, Ti30Pd2O62 and Ti29Pd3O61. The compounds crystallize in anatase TiO2 structure with Pd2+ ion in nearly square planar geometry and TiO6 octahedra are distorted by the creation of weakly bound oxygens. Structural analysis of Ti31Pd1O63 which is close to 3% Pd ion substituted TiO2 shows that bond valence of oxygens associated with both Ti and Pd ions in the lattice is 1.87. A low bond valence of oxygen is characteristic of weak oxygen in the lattice compared to oxygens with bond valence 2 and above in the same lattice. Thus, the exact positions of activated oxygens have been identified in the lattice from DFT calculations.
Pt has two stable valencies: +2 and +4. Ti ion in TiO2 is in +4 state. Is it possible to substitute Pt exclusively in +2 or +4 state in TiO2? Implications are that Pt in +2 will have oxide ion vacancies and Pt in +4 states will not have oxide ion vacancies. Indeed we could synthesize Pt ion substituted TiO2 with Pt in +2 and +4 states by solution combustion method. In chapter 4, we have shown the positive role of an oxide ion vacancy in the catalytic reaction. Ti0.97Pt2+0.03O1.97 and Ti0.97Pt4+0.03O2 have been synthesized by solution combustion method using alanine and glycine as the fuels respectively. Both are crystallizing in anatase TiO2 structure with 15 nm average crystallite size. X-ray photoelectron spectroscopy (XPS) confirmed Pt ions are only +2 state in Ti0.97Pt0.03O1.97 (alanine) and only in +4 state in Ti0.97Pt0.03O2 (glycine). CO oxidation rate with Ti0.97Pt2+0.03O1.97 is over 10 times higher compared to Ti0.97Pt4+0.03O2. The large shift in 100 % hydrocarbon oxidation to lower temperature was observed by Pt2+ ion substituted TiO2 from that by Pt4+ ion substituted TiO2. After reoxidation of the reduced compound by H2 as well as CO, Pt ions are stabilized in mixed valences, +2 and +4 states. The role of oxide ion vacancy in enhancing catalytic activity has been demonstrated by carrying out the CO oxidation and H2 + O2 recombination reaction in presence and in absence of O2. There is no deactivation of the catalyst by long time CO to CO2 catalytic reaction. We analyzed the activated lattice oxygens upon substitution of Pt2+ ion and Pt4+ ion in TiO2, using first-principles density functional theory (DFT) calculations with supercells Ti31Pt1O63, Ti30Pt2O62, Ti29Pt3O61 for Pt2+ ion substitution in TiO2 and Ti31Pt1O64, Ti30Pt2O62, Ti29Pt3O61 for Pt4+ ion substitution in TiO2. We find that the local structure of Pt2+ ion has a distorted square planar geometry and that of Pt4+ ion has an octahedral geometry similar to Ti4+ ion in pure TiO2. The change in coordination of Pt2+ ion gives rise to weakly bonded oxygens and these oxygens are responsible in high rates of catalytic reaction. Thus, the high catalytic activity results from synergistic roles of oxide ion vacancy and weakly bonded lattice oxygen.
In chapter 5, we have shown high rates of H2 + O2 recombination reaction by Ti0.97Pd0.03O1.97 catalyst coated on honeycomb monolith made up of cordierite material. This catalyst was coated on γ¬Al2O3 coated monolith by solution combustion method using dip-dry-burn process. This is a modified conventional method to coat catalysts on honeycombs. Formation of Ti0.97Pd0.03O1.97 catalyst on monolith was confirmed by XRD. Form the XPS spectra of Pd(3d) core level in Ti1-xPdxO2-δ, Pd ion is the formed to be +2 state. Ti0.97Pd0.03O1.97 showed high rates of H2 + O2 recombination compared to 2 at % Pd(metal)/γ-Al2O3, Ce0.98Pd0.02O2-δ, Ce0.98Pt0.02O2-δ, Ce0.73Zr0.25Pd0.02O2-δ and Ti0.98Pd0.02O1.98. Activation energy of H2 + O2 recombination reaction over Ti0.97Pd0.03O1.97 is 7.8 kcal/mole. Rates of reaction over Ti0.97Pd0.03O1.97 are in the range of 10 – 20 μmol/g/s at 60 0C and 4174 h-1 space velocity. Rate is orders of magnitude higher compared to noble metal catalysts.
From the industrial point of view, solvent-free hydrogenation of aromatic nitro compounds to amines at nearly 1 bar pressure is an important process. In chapter 6, we showed that Ti0.97Pd0.03O1.97 is a good –nitro to –amine conversion catalyst under solvent-free condition at 1.2 – 1.3 bar H2 pressure. Nitrobenzene, p-nitrotoluene and 2-chloro-4-nitrotoluene are taken for the catalytic reduction reaction. The amine products were analyzed by gas chromatography and mass spectrometry (GCMS). Further, confirmation of compounds was done by FTIR, 1H NMR and 13C NMR. In presence of alcohol as solvent, 100% conversion of aromatic nitro compounds to amines took place at higher temperature and it required more times. In n-butanol solvent, 100% conversion of nitrobenzene and p-nitrotoluene occurred within 10 h and 12 h at 105 °C respectively. We have compared solvent-free reduction of p-nitrotoluene over different catalysts at 90 °C. Catalytic activity for reduction of p¬nitrotoluene over Ti0.97Pd0.03O1.97 is much higher than that reaction over 3 atom % Pd on TiO2 and Pd metal. Turnover frequencies (TOF) for nitrobenzene and 2-chloro-4-nitrotoluene conversion are 217 and 20 over Ti0.97Pd0.03O1.97 respectively. With increase of temperature, TOF of aromatic nitro compound reduction is also increased. We have compared the solvent-free reduction of aromatic nitro compound over Ti0.97Pd0.03O1.97 with others in the literature. Upto 3 cycles of reduction reaction, there was no degradation of Ti0.97Pd0.03O1.97 catalyst and stability of catalyst structure was analyzed by XRD, XPS and TEM images. Catalyst is stable under reaction condition and the structure is retained with Pd in +2 state. Finally, we have proposed the mechanism of -nitro group reduction reaction based on the structure of Ti0.97Pd0.03O1.97.
Instead of handling nano-crystalline materials we proceeded with coating our catalysts on cordierite honeycombs. In chapter 7, we have shown high catalytic activity towards Heck reaction over Ce0.98Pd0.02O2-δ and Ti0.97Pd0.03O1.97 coated on cordierite monolith. XRD patterns of Ce0.98Pd0.02O2¬δ coated on cordierite monolith were indexed to fluorite structure. Heck reaction of aryl halide with olefins over Ce0.98Pd0.02O2-δ and Ti0.97Pd0.03O1.97 coated on cordierite monolith were carried out at 120 °C. The products were first analyzed by GCMS and for the confirmation of compounds, we have recorded 1H NMR and 13C NMR. Heck reaction was carried out with different solvents and different bases for choosing the good base and a solvent. Hence, we have chosen K2CO3 as base and N,N¬dimethylformamide (DMF) as solvent. We have compared the rates of Heck reactions over these two catalysts and Ti0.97Pd0.03O1.97 catalyst showed much higher catalytic activity than Ce0.98Pd0.02O2-δ. With increase of temperature from 65 °C to 120 °C, the catalytic activity of Ti0.97Pd0.03O1.97 on Heck reaction is also increased. The catalyst was reused for next Heck reaction without significant loss of activity. A mechanism for Heck reaction of aryl halide with alkyl acrylate has been proposed based on the structure of Ti0.97Pd0.03O1.97.
In chapter 8, we have provided a critical review of the work presented in the thesis. Critical issues such as noble metal ion doping in TiO2 vs noble metal ion substitution, difficulty of proving the substitution of low % noble metal ion in TiO2, need for better experimental methods to study noble metal ion in oxide matrix have been discussed. Finally, conclusions of the thesis are presented.
|
Page generated in 0.1202 seconds